火克什么| 养生吃什么最好| 什么药治胃炎效果好| baron是什么意思| ca125是什么意思| 松子是什么树的果实| 紫藤花什么时候开| 血小板是什么颜色的| 尿毒症是什么引起的| 火文念什么| 神经性头疼是什么原因造成的| 故事情节是什么意思| 红斑狼疮的症状是什么| 人的本质属性是什么| 进口二甲双胍叫什么| 农历今天什么日子| 贫血是什么原因造成的| 什么的树枝| 为什么会便血| 珍珠疹是什么| cps什么意思| 赤脚走路有什么好处| 为什么女人阴唇会变黑| 反绒皮是什么材质| 隐性基因是什么意思| 荷花的花语是什么| 十一朵玫瑰花代表什么意思| 跌跌撞撞什么意思| 瑞士移民需要什么条件| 1985年属牛是什么命| 左顾右盼的顾是什么意思| 急性扁桃体发炎吃什么药| 干巴得是什么意思| 熬夜吃什么对身体好| 川字加一横是什么字| 烫伤起水泡涂什么药膏| 脸上长湿疹是什么原因| 咖啡什么时候喝最好| 泌乳素高是什么原因引起的| 预估是什么意思| 什么水果可以解酒| 荼靡是什么意思| 毛囊炎挂什么科| 蒲地蓝消炎片主治什么| 雪莲菌泡牛奶有什么功效| 知青是什么| 坐南朝北是什么意思| 海参什么样的好| 夏天能干什么| 梦见大狼狗是什么意思| 宝批龙什么意思| 口红什么牌子最好| 人格是什么| hpv低危型是什么意思| 脑瘤早期什么症状| 马步鱼是什么鱼| 暗戳戳是什么意思| 身体有异味是什么原因| 什么叫银屑病| 反水是什么意思| 入睡困难吃什么药效果最好| 球蛋白适合什么人打| 冬至说什么祝福语| 发烧是什么原因引起的| 什么是慢阻肺| 乐高为什么这么贵| 本科和专科是什么意思| 肛裂用什么药膏| 莳是什么意思| 方可以加什么偏旁| 舒张压是什么| 水柔棉是什么面料| 直男癌是什么意思| 什么洗面奶最好用排行第一| 左眼皮一直跳是什么原因| 什么叫湿疹| 日本为什么侵华| 女人耳鸣是什么前兆| 成本倒挂什么意思| 追忆是什么意思| 精子成活率低吃什么药| 燃气灶什么牌子好| 矿物质是什么| 眼睑痉挛挂什么科| 眼睛视力模糊用什么眼药水| 塔罗牌是什么意思| 大运流年是什么意思| 乌鸡白凤丸有什么功效| 孕妇吃什么利尿排羊水| 12月16是什么星座| 三七粉什么时间吃最好| 痞满是什么意思| 乳房结节吃什么药| 口上长水泡是什么原因| 寄生虫长什么样子| 如花似玉什么意思| 梦见自己剪头发是什么意思| 活泼的近义词是什么| 汗毛重是什么原因| 樱花的花语是什么| 神龛是什么意思| 蝴蝶是什么意思| 嘶哑什么意思| 10点多是什么时辰| 甲沟炎挂什么科| 尿液发绿是什么原因| 手控是什么意思| 为什么被蚊子咬了会起包| 然五行属性是什么| 刘备和刘邦什么关系| 斑点狗是什么品种| 类风湿是什么意思| 补充微量元素吃什么| 得偿所愿是什么意思| 肾气虚吃什么中成药| 仓鼠不能吃什么| 沈阳六院主要治什么病| 一个王一个八念什么| 胃不舒服吃什么好| 膀胱充盈差是什么意思| 夏天哈尔滨有什么好玩的地方| 心脏扩大吃什么药好| 糖耐量是什么| 甲功是什么意思| 检查胰腺挂什么科| 低密度脂蛋白高有什么症状| 氨基酸有什么作用| 树根有什么作用| 胃痛去药店买什么药| hp-是什么意思| 肺部真菌感染吃什么药| 三七有什么功效和作用| 今天是什么纪念日| 两岁宝宝不开口说话是什么原因| 咖喱是什么味道| 猪的五行属什么| 女人什么时候绝经正常| 9月10日是什么日子| 血液循环不好吃什么药| 黄褐斑是什么样的图片| 单核细胞高是什么原因| 刷牙时牙龈出血是什么原因| 红色象征什么| 耘是什么意思| 罗马布是什么面料| 手震颤是什么原因引起的| 肉苁蓉和什么搭配最好| 经期吃什么食物比较好| 副乡长是什么级别| 脚趾第二个比第一个长有什么说法| 新陈代谢是什么| 送什么礼物给孩子| 女人心肌缺血吃什么药| 男人更年期在什么年龄| 课代表是什么意思| 蓟是什么意思| 喝什么会变白| 软著是什么| 心肌受损会出现什么症状| 什么葡萄品种最好吃| 什么排球好| 爱长闭口用什么护肤品| doki是什么意思| 月经期体重增加是什么原因| 光环是什么意思| 糖尿病吃什么食物| 绰号是什么意思| 四川为什么叫四川| 讣告什么意思| 腿毛长的男人代表什么| 稻谷是什么| 膨鱼鳃用什么搭配煲汤| 杵状指见于什么病| 什么东西天气越热它爬得越高| 总是掉头发是什么原因| 为什么今年闰六月| 重字五行属什么| 焦虑症吃什么药效果好| 水是什么生肖| 吃金针菇有什么好处| 变蛋吃多了有什么危害| 游离三碘甲状腺原氨酸是什么意思| 流氓是什么意思| 打呼噜挂什么科| 一什么牛| 什么叫高危行为| 月经来了吃什么水果好| 藏拙是什么意思| 克拉霉素主治什么病| 鸡精是什么做的| ttl什么意思| 愿闻其详什么意思| 阴到炎用什么药好得快| rfc是什么意思| 迁单是什么意思| 有恙是什么意思| 直视是什么意思| 吃什么胸大| 舌根苔白厚腻是什么原因| 老人双脚浮肿是什么原因| 手足口病忌口什么食物| yaoi是什么| 为什么醋能让疣体脱落| 炸酱面用什么酱| 容祖儿老公叫什么名字| 生化全套主要检查什么| 陈皮是什么皮做的| 李荣浩什么学历| 验孕棒什么时候测准确| 公卿是什么意思| c是什么| 海椒是什么辣椒| 精神分裂是什么| 参芪颗粒适合什么人吃| 为国为民是什么生肖| 大学挂科是什么意思| 五行中金代表什么| 碱性磷酸酶高吃什么药| 女性肾虚吃什么补最好最快| 害羞的近义词是什么| 梦见玻璃碎了什么意思| 办理港澳通行证需要带什么证件| 15是什么意思| 军校出来能干什么| 犯太岁是什么意思| 印堂发红是什么的征兆| 左眼老是跳是什么原因| 吃布洛芬不能吃什么| 老人身上痒是什么原因| 朱元璋代表什么生肖| 减肥吃什么最好| 阅人无数什么意思| 蛇的五行属什么| 木耳菜是什么菜| 淘宝预售是什么意思| npc是什么意思| 骨髓纤维化是什么病| 经期喝咖啡有什么影响| 特别容易饿是什么原因| 盆腔积液吃什么药效果最好| 右耳朵热代表什么意思| 女人吃什么新陈代谢快| 舌头裂纹吃什么药| 外向是什么意思| 什么是居间费| 积食内热吃什么药| 血小板计数偏低是什么意思| 西红柿不能和什么一起吃| 大便化验隐血阳性什么意思| 脚浮肿是什么原因| 海洋里面有什么动物| 营养过剩是什么意思| 乳头痒是怎么回事是什么原因| 滑膜炎吃什么药| 加字五行属什么| 远房亲戚是什么意思| 人体七大营养素是什么| 吃人肉会得什么病| 安宫牛黄丸什么时候吃| 胡萝卜不能和什么食物一起吃| 面红耳赤是什么意思| 鬼针草能治什么病| 支架后吃什么药| 早期教育是什么专业| 百度Jump to content

深圳市市长是什么级别

From Wikipedia, the free encyclopedia
(Redirected from Blockiness)
Different types of polymers: 1) homopolymer 2) alternating copolymer 3) random copolymer 4) block copolymer 5) graft copolymer.
百度 ”  湖北大冶保安镇农科村党总支书记王能干代表说:“这些年,我深刻感受到,有多大担当才能干多大事业,尽多大责任才会有多大成就。

In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are sometimes called bipolymers. Those obtained from three and four monomers are called terpolymers and quaterpolymers, respectively.[1] Copolymers can be characterized by a variety of techniques such as NMR spectroscopy and size-exclusion chromatography to determine the molecular size, weight, properties, and composition of the material.[2]

Commercial copolymers include acrylonitrile butadiene styrene (ABS), styrene/butadiene co-polymer (SBR), nitrile rubber, styrene-acrylonitrile, styrene-isoprene-styrene (SIS) and ethylene-vinyl acetate, all of which are formed by chain-growth polymerization. Another production mechanism is step-growth polymerization, which is used to produce the nylon-12/6/66 copolymer[3] of nylon 12, nylon 6 and nylon 66, as well as the copolyester family. Copolymers can be used to develop commercial goods or drug delivery vehicles.

IUPAC definition

copolymer: A polymer derived from more than one species of monomer. (See Gold Book entry for note.) [4]

Since a copolymer consists of at least two types of constituent units (also structural units), copolymers can be classified based on how these units are arranged along the chain.[5] Linear copolymers consist of a single main chain and include alternating copolymers, statistical copolymers, and block copolymers. Branched copolymers consist of a single main chain with one or more polymeric side chains, and can be grafted, star shaped, or have other architectures.

Reactivity ratios

[edit]

The reactivity ratio of a growing copolymer chain terminating in a given monomer is the ratio of the reaction rate constant for addition of the same monomer and the rate constant for addition of the other monomer. That is, and , where for example is the rate constant for propagation of a polymer chain ending in monomer 1 (or A) by addition of monomer 2 (or B).[6]

The composition and structural type of the copolymer depend on these reactivity ratios r1 and r2 according to the Mayo–Lewis equation, also called the copolymerization equation or copolymer equation,[7][6] for the relative instantaneous rates of incorporation of the two monomers.

Linear copolymers

[edit]

Block copolymers

[edit]

Block copolymers comprise two or more homopolymer subunits linked by covalent bonds. The union of the homopolymer subunits may require an intermediate non-repeating subunit, known as a junction block. Diblock copolymers have two distinct blocks; triblock copolymers have three. Technically, a block is a portion of a macromolecule, comprising many units, that has at least one feature which is not present in the adjacent portions.[1] A possible sequence of repeat units A and B in a triblock copolymer might be ~A-A-A-A-A-A-A-B-B-B-B-B-B-B-A-A-A-A-A~.[8]

IUPAC definition

block copolymer: A copolymer that is a block polymer. In the constituent macromolecules of a block copolymer, adjacent blocks are constitutionally different, i.e. adjacent blocks comprise constitutional unit derived from different species of monomer or from the same species of monomer but with a different composition or sequence distribution of constitutional units. [9]

Block copolymers are made up of blocks of different polymerized monomers. For example, polystyrene-b-poly(methyl methacrylate) or PS-b-PMMA (where b = block) is usually made by first polymerizing styrene, and then subsequently polymerizing methyl methacrylate (MMA) from the reactive end of the polystyrene chains. This polymer is a "diblock copolymer" because it contains two different chemical blocks. Triblocks, tetrablocks, multiblocks, etc. can also be made. Diblock copolymers are made using living polymerization techniques, such as atom transfer free radical polymerization (ATRP), reversible addition fragmentation chain transfer (RAFT), ring-opening metathesis polymerization (ROMP), and living cationic or living anionic polymerizations.[10] An emerging technique is chain shuttling polymerization.

The synthesis of block copolymers requires that both reactivity ratios are much larger than unity (r1 >> 1, r2 >> 1) under the reaction conditions, so that the terminal monomer unit of a growing chain tends to add a similar unit most of the time.[11]

The "blockiness" of a copolymer is a measure of the adjacency of comonomers vs their statistical distribution. Many or even most synthetic polymers are in fact copolymers, containing about 1-20% of a minority monomer. In such cases, blockiness is undesirable.[12] A block index has been proposed as a quantitative measure of blockiness or deviation from random monomer composition.[13]

Alternating copolymers

[edit]
IUPAC definition

alternating copolymer: A copolymer consisting of macromolecule comprising two species of monomeric unit in alternating sequence. (See Gold Book entry for note.) [14]

An alternating copolymer has regular alternating A and B units, and is often described by the formula: -A-B-A-B-A-B-A-B-A-B-, or -(-A-B-)n-. The molar ratio of each monomer in the polymer is normally close to one, which happens when the reactivity ratios r1 and r2 are close to zero, as can be seen from the Mayo–Lewis equation. For example, in the free-radical copolymerization of styrene maleic anhydride copolymer, r1 = 0.097 and r2 = 0.001,[11] so that most chains ending in styrene add a maleic anhydride unit, and almost all chains ending in maleic anhydride add a styrene unit. This leads to a predominantly alternating structure.

A step-growth copolymer -(-A-A-B-B-)n- formed by the condensation of two bifunctional monomers A–A and B–B is in principle a perfectly alternating copolymer of these two monomers, but is usually considered as a homopolymer of the dimeric repeat unit A-A-B-B.[6] An example is nylon 66 with repeat unit -OC-( CH2)4-CO-NH-(CH2)6-NH-, formed from a dicarboxylic acid monomer and a diamine monomer.

Periodic copolymers

[edit]

Periodic copolymers have units arranged in a repeating sequence. For two monomers A and B, for example, they might form the repeated pattern (A-B-A-B-B-A-A-A-A-B-B-B)n.

Statistical copolymers

[edit]
IUPAC definition

statistical copolymer: A copolymer consisting of macromolecule in which the sequential distribution of the monomeric unit obeys known statistical laws. (See Gold Book entry for note.) [15]

In statistical copolymers the sequence of monomer residues follows a statistical rule. If the probability of finding a given type monomer residue at a particular point in the chain is equal to the mole fraction of that monomer residue in the chain, then the polymer may be referred to as a truly random copolymer[16] (structure 3).

Statistical copolymers are dictated by the reaction kinetics of the two chemically distinct monomer reactants, and are commonly referred to interchangeably as "random" in the polymer literature.[17] As with other types of copolymers, random copolymers can have interesting and commercially desirable properties that blend those of the individual homopolymers. Examples of commercially relevant random copolymers include rubbers made from styrene-butadiene copolymers and resins from styrene-acrylic or methacrylic acid derivatives.[18] Copolymerization is particularly useful in tuning the glass transition temperature, which is important in the operating conditions of polymers; it is assumed that each monomer occupies the same amount of free volume whether it is in a copolymer or homopolymer, so the glass transition temperature (Tg) falls between the values for each homopolymer and is dictated by the mole or mass fraction of each component.[17]

A number of parameters are relevant in the composition of the polymer product; namely, one must consider the reactivity ratio of each component. Reactivity ratios describe whether the monomer reacts preferentially with a segment of the same type or of the other type. For example, a reactivity ratio that is less than one for component 1 indicates that this component reacts with the other type of monomer more readily. Given this information, which is available for a multitude of monomer combinations in the "Wiley Database of Polymer Properties",[19] the Mayo-Lewis equation can be used to predict the composition of the polymer product for all initial mole fractions of monomer. This equation is derived using the Markov model, which only considers the last segment added as affecting the kinetics of the next addition; the Penultimate Model considers the second-to-last segment as well, but is more complicated than is required for most systems.[20] When both reactivity ratios are less than one, there is an azeotropic point in the Mayo-Lewis plot. At this point, the mole fraction of monomer equals the composition of the component in the polymer.[17]

There are several ways to synthesize random copolymers. The most common synthesis method is free radical polymerization; this is especially useful when the desired properties rely on the composition of the copolymer rather than the molecular weight, since free radical polymerization produces relatively disperse polymer chains. Free radical polymerization is less expensive than other methods, and produces high-molecular weight polymer quickly.[21] Several methods offer better control over dispersity. Anionic polymerization can be used to create random copolymers, but with several caveats: if carbanions of the two components do not have the same stability, only one of the species will add to the other. Additionally, anionic polymerization is expensive and requires very clean reaction conditions, and is therefore difficult to implement on a large scale.[17] Less disperse random copolymers are also synthesized by ″living″ controlled radical polymerization methods, such as atom-transfer radical-polymerization (ATRP), nitroxide mediated radical polymerization (NMP), or reversible addition?fragmentation chain-transfer polymerization (RAFT). These methods are favored over anionic polymerization because they can be performed in conditions similar to free radical polymerization. The reactions require longer experimentation periods than free radical polymerization, but still achieve reasonable reaction rates.[22]

Stereoblock copolymers

[edit]
A stereoblock vinyl copolymer

In stereoblock copolymers the blocks or units differ only in the tacticity of the monomers.

Gradient copolymers

[edit]

In gradient copolymers the monomer composition changes gradually along the chain.

Branched copolymers

[edit]

There are a variety of architectures possible for nonlinear copolymers. Beyond grafted and star polymers discussed below, other common types of branched copolymers include brush copolymers and comb copolymers.

Graft copolymers

[edit]
The graft copolymer consists of a main polymer chain or backbone (A) covalently bonded to one or more side chains (B)

Graft copolymers are a special type of branched copolymer wherein the side chains are structurally distinct from the main chain. Typically, the main chain is formed from one type of monomer (A) and branches are formed from another monomer (B), or the side-chains have constitutional or configurational features that differ from those in the main chain.[5]

The individual chains of a graft copolymer may be homopolymers or copolymers. Note that different copolymer sequencing is sufficient to define a structural difference, thus an A-B diblock copolymer with A-B alternating copolymer side chains is properly called a graft copolymer.

For example, polystyrene chains may be grafted onto polybutadiene, a synthetic rubber which retains one reactive C=C double bond per repeat unit. The polybutadiene is dissolved in styrene, which is then subjected to free-radical polymerization. The growing chains can add across the double bonds of rubber molecules forming polystyrene branches. The graft copolymer is formed in a mixture with ungrafted polystyrene chains and rubber molecules.[23]

As with block copolymers, the quasi-composite product has properties of both "components." In the example cited, the rubbery chains absorb energy when the substance is hit, so it is much less brittle than ordinary polystyrene. The product is called high-impact polystyrene, or HIPS.

Star copolymers

[edit]
Star shaped polymers or copolymers

Star copolymers have several polymer chains connected to a central core.

Microphase separation

[edit]
SBS block copolymer in TEM

Block copolymers can "microphase separate" to form periodic nanostructures,[24][25] such as styrene-butadiene-styrene block copolymer. The polymer is known as Kraton and is used for shoe soles and adhesives. Owing to the microfine structure, transmission electron microscope or TEM was used to examine the structure. The butadiene matrix was stained with osmium tetroxide to provide contrast in the image. The material was made by living polymerization so that the blocks are almost monodisperse to create a regular microstructure. The molecular weight of the polystyrene blocks in the main picture is 102,000; the inset picture has a molecular weight of 91,000, producing slightly smaller domains.

SBS block copolymer schematic microstructure

Microphase separation is a situation similar to that of oil and water. Oil and water are immiscible (i.e., they can phase separate). Due to the incompatibility between the blocks, block copolymers undergo a similar phase separation. Since the blocks are covalently bonded to each other, they cannot demix macroscopically like water and oil. In "microphase separation," the blocks form nanometer-sized structures. Depending on the relative lengths of each block, several morphologies can be obtained. In diblock copolymers, sufficiently different block lengths lead to nanometer-sized spheres of one block in a matrix of the second (e.g., PMMA in polystyrene). Using less different block lengths, a "hexagonally packed cylinder" geometry can be obtained. Blocks of similar length form layers (often called lamellae in the technical literature). Between the cylindrical and lamellar phase is the gyroid phase. The nanoscale structures created from block copolymers can potentially be used to create devices for computer memory, nanoscale-templating, and nanoscale separations.[26] Block copolymers are sometimes used as a replacement for phospholipids in model lipid bilayers and liposomes for their superior stability and tunability.[27][28]

Polymer scientists use thermodynamics to describe how the different blocks interact.[29][30] The product of the degree of polymerization, n, and the Flory-Huggins interaction parameter, , gives an indication of how incompatible the two blocks are and whether they will microphase separate. For example, a diblock copolymer of symmetric composition will microphase separate if the product is greater than 10.5. If is less than 10.5, the blocks will mix and microphase separation is not observed. The incompatibility between the blocks also affects the solution behavior of these copolymers and their adsorption behavior on various surfaces.[31]

Block copolymers are able to self-assemble in selective solvents to form micelles among other structures.[32]

In thin films, block copolymers are of great interest as masks in the lithographic patterning of semiconductor materials for applications in high density data storage. A key challenge is to minimise the feature size and much research is in progress on this.[33]

Characterization

[edit]

Characterization techniques for copolymers are similar to those for other polymeric materials. These techniques can be used to determine the average molecular weight, molecular size, chemical composition, molecular homogeneity, and physiochemical properties of the material.[2] However, given that copolymers are made of base polymer components with heterogeneous properties, this may require multiple characterization techniques to accurately characterize these copolymers.[34]

Spectroscopic techniques, such as nuclear magnetic resonance spectroscopy, infrared spectroscopy, and UV spectroscopy, are often used to identify the molecular structure and chemical composition of copolymers. In particular, NMR can indicate the tacticity and configuration of polymeric chains while IR can identify functional groups attached to the copolymer.

Scattering techniques, such as static light scattering, dynamic light scattering, and small-angle neutron scattering, can determine the molecular size and weight of the synthesized copolymer. Static light scattering and dynamic light scattering use light to determine the average molecular weight and behavior of the copolymer in solution whereas small-angle neutron scattering uses neutrons to determine the molecular weight and chain length. Additionally, x-ray scattering techniques, such as small-angle X-ray scattering (SAXS) can help determine the nanometer morphology and characteristic feature size of a microphase-separated block-copolymer or suspended micelles. [35]

Differential scanning calorimetry is a thermoanalytical technique used to determine the thermal events of the copolymer as a function of temperature.[36] It can indicate when the copolymer is undergoing a phase transition, such as crystallization or melting, by measuring the heat flow required to maintain the material and a reference at a constantly increasing temperature.

Thermogravimetric analysis is another thermoanalytical technique used to access the thermal stability of the copolymer as a function of temperature. This provides information on any changes to the physicochemical properties, such as phase transitions, thermal decompositions, and redox reactions.[37]

Size-exclusion chromatography can separate copolymers with different molecular weights based on their hydrodynamic volume.[38] From there, the molecular weight can be determined by deriving the relationship from its hydrodynamic volume. Larger copolymers tend to elute first as they do not interact with the column as much. The collected material is commonly detected by light scattering methods, a refractometer, or a viscometer to determine the concentration of the eluted copolymer.  

Applications

[edit]

Block copolymers

[edit]

A common application of block copolymers is to develop thermoplastic elastomers (TPEs).[2] Early commercial TPEs were developed from polyurethranes (TPUs), consisting of alternating soft segments and hard segments, and are used in automotive bumpers and snowmobile treads.[2] Styrenic TPEs entered the market later, and are used in footwear, bitumen modification, thermoplastic blending, adhesives, and cable insulation and gaskets.[2] Modifying the linkages between the blocks resulted in newer TPEs based on polyesters (TPES) and polyamides (TPAs), used in hose tubing, sport goods, and automotive components.[2]

Amphiphilic block copolymers have the ability to form micelles and nanoparticles.[39] Due to this property, amphiphilic block copolymers have garnered much attention in research on vehicles for drug delivery.[39][40] Similarly, amphiphilic block copolymers can be used for the removal of organic contaminants from water either through micelle formation[2] or film preparation.[41]

Alternating copolymers

[edit]

The styrene-maleic acid (SMA) alternating copolymer displays amphiphilicity depending on pH, allowing it to change conformations in different environments.[42] Some conformations that SMA can take are random coil formation, compact globular formation, micelles, and nanodiscs.[42] SMA has been used as a dispersing agent for dyes and inks, as drug delivery vehicles, and for membrane solubilization.[42]

Copolymer engineering

[edit]

Copolymerization is used to modify the properties of manufactured plastics to meet specific needs, for example to reduce crystallinity, modify glass transition temperature, control wetting properties or to improve solubility.[43] It is a way of improving mechanical properties, in a technique known as rubber toughening. Elastomeric phases within a rigid matrix act as crack arrestors, and so increase the energy absorption when the material is impacted for example. Acrylonitrile butadiene styrene is a common example.

See also

[edit]

References

[edit]
  1. ^ a b McNaught, A. D.; Wilkinson, A. (1996). "Glossary of basic terms in polymer science (IUPAC Recommendations 1996)". Pure and Applied Chemistry. 68: 2287–2311. doi:10.1351/goldbook.C01335. ISBN 978-0-9678550-9-7.
  2. ^ a b c d e f g Hadjichristidis, Nikos; Pispas, Stergios; Floudas, George (2025-08-06). Block Copolymers. Hoboken, USA: John Wiley & Sons, Inc. doi:10.1002/0471269808. ISBN 978-0-471-39436-5.
  3. ^ "Nylon-12/6/66 Copolymer". Cosmetics Info. Archived from the original on 11 April 2021. Retrieved 12 April 2021.
  4. ^ "copolymer". Gold Book. IUPAC. 2014. doi:10.1351/goldbook.C01335. Retrieved 1 April 2024.
  5. ^ a b Jenkins, A. D; Kratochvíl, P; Stepto, R. F. T; Suter, U. W (1996). "Glossary of basic terms in polymer science (IUPAC Recommendations 1996)". Pure and Applied Chemistry. 68 (12): 2287–2311. doi:10.1351/pac199668122287.
  6. ^ a b c Cowie, J.M.G. (1991). Polymers: Chemistry and Physics of Modern Materials (2nd ed.). Blackie (USA: Chapman and Hall). pp. 104–106. ISBN 978-0-216-92980-7.
  7. ^ Mayo, Frank R.; Lewis, Frederick M. (1944). "Copolymerization. I. A Basis for Comparing the Behavior of Monomers in Copolymerization; The Copolymerization of Styrene and Methyl Methacrylate". J. Am. Chem. Soc. 66 (9): 1594–1601. Bibcode:1944JAChS..66.1594M. doi:10.1021/ja01237a052.
  8. ^ Cowie, p.4
  9. ^ "block copolymer". Gold Book. IUPAC. 2014. doi:10.1351/goldbook.B00683. Retrieved 1 April 2024.
  10. ^ Hadjichristidis N., Pispas S., Floudas G. Block copolymers: synthetic strategies, physical properties, and applications – Wiley, 2003.
  11. ^ a b Fried, Joel R. (2003). Polymer Science and Technology (2nd ed.). Prentice Hall. pp. 41–43. ISBN 978-0-13-018168-8.
  12. ^ Chum, P. S.; Swogger, K. W. (2008). "Olefin Polymer Technologies-History and Recent Progress at the Dow Chemical Company". Progress in Polymer Science. 33 (8): 797–819. doi:10.1016/j.progpolymsci.2008.05.003.
  13. ^ Shan, Colin Li Pi; Hazlitt, Lonnie G. (2007). "Block Index for Characterizing Olefin Block Copolymers". Macromol. Symp. 257: 80–93. CiteSeerX 10.1.1.424.4699. doi:10.1002/masy.200751107.
  14. ^ "alternating copolymer". Gold Book. IUPAC. 2014. doi:10.1351/goldbook.A00250. Retrieved 1 April 2024.
  15. ^ "statistical copolymer". Gold Book. IUPAC. 2014. doi:10.1351/goldbook.S05955. Retrieved 1 April 2024.
  16. ^ Painter P. C. and Coleman M. M., Fundamentals of Polymer Science, CRC Press, 1997, p 14.
  17. ^ a b c d Chanda, M. Introduction to Polymer Science and Chemistry. Second Edition. CRC Press, 2013.
  18. ^ Overberger, C. ″Copolymerization: 1. General Remarks; 2: Selective Examples of Copolymerizations″. Journal of Polymer Science: Polymer Symposium 72, 67-69 (1985).
  19. ^ Greenley, Robert. ″Free Radical Copolymerization Reactivity Ratios″. The Wiley Database of Polymer Properties. 2003. doi:10.1002/0471532053.bra007
  20. ^ Ruchatz, Dieter; Fink, Gerhard (1998). "Ethene?Norbornene Copolymerization with Homogeneous Metallocene and Half-Sandwich Catalysts: Kinetics and Relationships between Catalyst Structure and Polymer Structure. 3. Copolymerization Parameters and Copolymerization Diagrams". Macromolecules. 31 (15): 4681–3. Bibcode:1998MaMol..31.4681R. doi:10.1021/ma971043b. PMID 9680398.
  21. ^ Cao, Ti and Stephen E. Webber. ″Free-Radical Copolymerization of Fullerenes with Styrene″. Macromolecules, 1996, 28, pp 3741-3743.
  22. ^ Matyjaszewski, Krzysztof (1996). "Controlled radical polymerization". Current Opinion in Solid State and Materials Science. 1 (6): 769–776. Bibcode:1996COSSM...1..769M. doi:10.1016/S1359-0286(96)80101-X.
  23. ^ Rudin, Alfred (1982). The Elements of Polymer Science and Engineering (1st ed.). Academic Press. p. 19. ISBN 978-0-12-601680-2.
  24. ^ Hamley, I.W. "The Physics of Block Copolymers" – Oxford University Press, 1998.
  25. ^ Hamley, I.W. "Developments in Block Copolymer Science and Technology" – Wiley, 2004.
  26. ^ Gazit, Oz; Khalfin, Rafail; Cohen, Yachin; Tannenbaum, Rina (2009). "Self-assembled diblock copolymer "nanoreactors" as catalysts for metal nanoparticle synthesis". Journal of Physical Chemistry C. 113 (2): 576–583. doi:10.1021/jp807668h.
  27. ^ Meier, Wolfgang; Nardin, Corinne; Winterhalter, Mathias (2025-08-06). "Reconstitution of Channel Proteins in (Polymerized) ABA Triblock Copolymer Membranes". Angewandte Chemie International Edition. 39 (24). Wiley: 4599–4602. doi:10.1002/1521-3773(20001215)39:24<4599::aid-anie4599>3.0.co;2-y. ISSN 1433-7851. PMID 11169683.
  28. ^ Zhang, Xiaoyan; Tanner, Pascal; Graff, Alexandra; Palivan, Cornelia G.; Meier, Wolfgang (2025-08-06). "Mimicking the cell membrane with block copolymer membranes". Journal of Polymer Science Part A: Polymer Chemistry. 50 (12). Wiley: 2293–2318. Bibcode:2012JPoSA..50.2293Z. doi:10.1002/pola.26000. ISSN 0887-624X.
  29. ^ Bates, Frank S.; Fredrickson, Glenn H. (2014). "Block Copolymer Thermodynamics: Theory and Experiment". Annual Review of Physical Chemistry. 41: 525–557. Bibcode:1990ARPC...41..525B. doi:10.1146/annurev.pc.41.100190.002521. PMID 20462355.
  30. ^ Chremos, Alexandros; Nikoubashman, Arash; Panagiotopoulos, Athanassios (2014). "Flory-Huggins parameter χ, from binary mixtures of Lennard-Jones particles to block copolymer melts". J. Chem. Phys. 140 (5): 054909. Bibcode:2014JChPh.140e4909C. doi:10.1063/1.4863331. PMID 24511981.
  31. ^ Hershkovitz, Eli; Tannenbaum, Allen; Tannenbaum, Rina (2008). "Adsorption of block co-polymers from selective solvents on curved surfaces". Macromolecules. 41 (9): 3190–3198. Bibcode:2008MaMol..41.3190H. doi:10.1021/ma702706p. PMC 2957843. PMID 20976029.
  32. ^ Hamley, I.W. "Block Copolymers in Solution" – Wiley, 2005.
  33. ^ Hamley, IW (2009). "Ordering in Thin Films of Block Copolymers: Fundamentals to Potential Applications". Progress in Polymer Science. 34 (11): 1161–1210. doi:10.1016/j.progpolymsci.2009.06.003.
  34. ^ Rowland, Steven M.; Striegel, André M. (2025-08-06). "Characterization of Copolymers and Blends by Quintuple-Detector Size-Exclusion Chromatography". Analytical Chemistry. 84 (11): 4812–4820. doi:10.1021/ac3003775. ISSN 0003-2700. PMID 22591263.
  35. ^ Hu, Hanqiong; Gopinadhan, Manesh; Osuji, Chinedum O. (2025-08-06). "Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter". Soft Matter. 22 (10): 3867–3889. Bibcode:2014SMat...10.3867H. doi:10.1039/C3SM52607K. PMID 24740355.
  36. ^ Skoog, Douglas A. (1998). Principles of instrumental analysis. F. James Holler, Timothy A. Nieman (5th ed.). Philadelphia: Saunders College Pub. ISBN 0-03-002078-6. OCLC 37866092.
  37. ^ Coats, A. W.; Redfern, J. P. (2025-08-06). "Thermogravimetric analysis. A review". Analyst. 88 (1053): 906–924. Bibcode:1963Ana....88..906C. doi:10.1039/AN9638800906. ISSN 1364-5528.
  38. ^ Yamakawa, Hiromi (1971). Modern theory of polymer solutions. New York: Harper & Row. ISBN 0-06-047309-6. OCLC 159244.
  39. ^ a b Cho, Heui Kyoung; Cheong, In Woo; Lee, Jung Min; Kim, Jung Hyun (2010). "Polymeric nanoparticles, micelles and polymersomes from amphiphilic block copolymer". Korean Journal of Chemical Engineering. 27 (3): 731–740. doi:10.1007/s11814-010-0216-5. ISSN 0256-1115. S2CID 95286455.
  40. ^ R?sler, Annette; Vandermeulen, Guido W. M.; Klok, Harm-Anton (2025-08-06). "Advanced drug delivery devices via self-assembly of amphiphilic block copolymers". Advanced Drug Delivery Reviews. MOST CITED PAPERS IN THE HISTORY OF ADVANCED DRUG DELIVERY REVIEWS: A TRIBUTE TO THE 25TH ANNIVERSARY OF THE JOURNAL. 64: 270–279. doi:10.1016/j.addr.2012.09.026. ISSN 0169-409X.
  41. ^ Herrera-Morales, Jairo; Turley, Taylor A.; Betancourt-Ponce, Miguel; Nicolau, Eduardo (2019). "Nanocellulose-Block Copolymer Films for the Removal of Emerging Organic Contaminants from Aqueous Solutions". Materials. 12 (2): 230. Bibcode:2019Mate...12..230H. doi:10.3390/ma12020230. ISSN 1996-1944. PMC 6357086. PMID 30641894.
  42. ^ a b c Huang, Jing; Turner, S. Richard (2025-08-06). "Recent advances in alternating copolymers: The synthesis, modification, and applications of precision polymers". Polymer. 116: 572–586. doi:10.1016/j.polymer.2017.01.020. ISSN 0032-3861.
  43. ^ Muzammil, Iqbal; Li, Yupeng; Lei, Mingkai (2017). "Tunable wettability and pH-responsiveness of plasma copolymers of acrylic acid and octafluorocyclobutane". Plasma Processes and Polymers. 14 (10): 1700053. doi:10.1002/ppap.201700053. S2CID 104161308.
[edit]
蚕蛹是什么 小孩老是打嗝是什么原因 米粉是什么做的 老是发烧是什么原因 大将是什么级别
胃火重口臭吃什么药好 经常熬夜吃什么好 心脏跳的快什么原因 低钾会出现什么症状 寻常疣是什么样子图片
种牙是什么意思 脚心有痣代表什么意思 突然发胖要警惕什么病 萃的意思是什么 西元前是什么意思
碧玺是什么 冰箱灯不亮是什么原因 爱的本质是什么 低聚木糖是什么 开普拉多的都是什么人
区间放量是什么意思hcv9jop5ns9r.cn 月经血黑是什么原因hcv8jop3ns5r.cn 肌酸激酶高是什么病hcv8jop0ns0r.cn 什么叫985大学hcv9jop0ns4r.cn 日加个成念什么bjhyzcsm.com
什么是通勤hcv8jop8ns6r.cn 什么察秋毫0735v.com george是什么牌子hcv9jop0ns8r.cn 炖什么汤对肺部最好hcv7jop6ns1r.cn 宝宝吃的益生菌什么牌子好hcv8jop8ns9r.cn
小知了叫什么helloaicloud.com 经常放屁是什么原因造成的hcv9jop4ns2r.cn 啦啦是什么意思hkuteam.com 龙的幸运色是什么颜色hcv9jop7ns1r.cn 为什么会心肌缺血hcv8jop1ns3r.cn
为什么眼睛会红hcv9jop0ns1r.cn 宫寒可以吃什么水果hcv7jop9ns0r.cn 吃什么有助于骨头恢复hcv9jop3ns9r.cn 男人容易出汗是什么原因造成的hcv8jop0ns6r.cn 什么是文字狱hcv8jop3ns2r.cn
百度