什么是无期徒刑| 嗓子哑是什么原因引起的| 年岁是什么意思| 开火念什么| 嗦是什么意思| 十一月十九是什么星座| 上梁不正下梁歪什么意思| 折耳根什么味道| 吃什么能增强免疫力| 脑管瘤的症状是什么| 计划生育什么时候开始的| 什么是染色体| anode是什么意思| 兰州大学什么专业最好| 银屑病是什么病| 不动明王是什么属相的本命佛| 苯海拉明是什么药| 曹操姓什么| 白细胞低吃什么补| 绿卡有什么用| 怀孕什么时候开始孕吐| 伏特加是什么| 蓓蕾是什么意思| 肠炎发烧吃什么药| 为什么会胀气| 苦涩是什么意思| 六月初七是什么星座| z什么意思| 银装素裹是什么意思| 罗非鱼长什么样| 梦见自己和别人结婚是什么意思| 口舌是非是什么意思| 腼腆什么意思| tba是什么意思| 小蜘蛛吃什么| 9月份怀孕预产期是什么时候| 炖鸡放什么材料| 蛋白尿是什么原因引起的| 吃什么补肾最好| bi是什么意思| 围绝经期什么意思| 细胞角蛋白19片段是什么意思| 什么叫走读生| 什么叫强迫症| 脑梗吃什么食物好| 油光满面是什么意思| 橡皮擦是什么材料做的| 脚臭是什么原因引起的| 子宫偏小是什么原因| 上嘴唇上有痣代表什么| 牙垢是什么| 心跳过慢吃什么药| 盂是什么意思| 脚筋膜炎什么办法恢复的最快| 仙人跳什么意思| 非甾体抗炎药是什么意思| 降尿酸什么药最好| 下象棋有什么好处| 额头长痘是什么原因| 小腹胀胀的是什么原因| 经常拉肚子是什么原因引起的| kodice是什么牌子| 1月什么星座| 绞丝旁一个奇念什么| 毛很长的狗是什么品种| j是什么| 属龙和什么属相相冲| 指征是什么意思| 吃什么都是苦的是怎么回事| 膝盖肿是什么原因| 羟苯乙酯是什么东西| 血小板低有什么危害| 手麻木吃什么药好| 莲花和荷花有什么区别| 护资成绩什么时候出| 异卵双胞胎什么意思| 吗丁啉是什么药| 木人石心是什么意思| 大家闺秀是什么生肖| 惟字五行属什么| 三七粉吃了有什么好处| 水母是什么| 0n是什么意思| 乳酸脱氢酶高是什么原因| 泉中水是什么生肖| 四两拨千斤是什么意思| 六月十五是什么星座| 梦见瓜是什么意思| spiderking是什么牌子| 肺气肿吃什么食物| 枕大池增大什么意思| 麦冬长什么样| 露从今夜白下一句是什么| 牙疼挂什么科| 晚上适合喝什么茶| 什么米减肥效果好| 梦到捡金子首饰是什么意思| 补脾吃什么食物最好| 广谱是什么意思| ku是什么单位| 左侧卵巢囊性包块是什么意思| 48年属什么生肖| 什么叫批次线| 时兴是什么意思| 男人练臀桥有什么用| 闭关什么意思| 4.5是什么星座| 幼猫能吃什么| 利有攸往是什么意思| 滴水不漏是什么生肖| 小孩咳嗽挂什么科| 肛门下坠感是什么症状| 帕金森吃什么药好得快| 小狗拉肚子吃什么药| 骨质增生挂什么科| 早上起来腰疼是什么原因| 副乳是什么原因造成的| 血压计什么牌子好| 大什么大| 老人怕冷是什么原因| 我们为什么会笑| 内向的人适合什么工作| 鲤鱼为什么很少人吃| 周二右眼皮跳是什么预兆| 党参长什么样子| 感冒吃什么水果| 肖像是什么意思| 哪吒妈妈叫什么| 甘油三酯高会引起什么病| 电头是什么| 孕妇可以喝什么饮料| 为什么会有眼袋| grn什么颜色| 孕妇有狐臭擦什么最好| 电轴左偏是什么原因| 云南是什么民族| 嗓子疼喝什么| 什么叫酮症酸中毒| 4月份有什么节日| singing是什么意思| 女人怕冷是什么原因| 阴灵是什么意思| 南京是什么省| 周公解梦梦见蛇是什么意思| 李逵代表什么生肖| 球迷是什么意思| 鸡眼长什么样子图片| 补充胶原蛋白吃什么最好| 法国公鸡是什么牌子| 张信哲为什么不结婚| 请问支气管炎吃什么药最有效| 10.30什么星座| 嗔恨是什么意思| 长脸适合什么发型女| 成吉思汗属什么生肖| 三个吉念什么| 什么人容易得阿尔兹海默症| pp1是什么意思| 湛蓝是什么颜色| 宁字五行属什么| 水头是什么意思| 为什么有| 可乐杀精是什么意思| 手指甲变薄是什么原因| 素毛肚是什么做的| 二甲双胍缓释片什么时候吃| 下饭是什么意思| 梦见抓龙虾是什么意思| 金钱草有什么功效| 鸟进屋有什么预兆| 吃生红枣有什么好处| 待产是什么意思| 2025是什么年| 晨尿有泡沫是什么原因| 气罐和火罐有什么区别| 心理学属于什么学科| 蔡英文是什么党派| 吃火锅都吃什么菜| 波菜不能和什么一起吃| 什么鸟不能飞| 最新奥特曼叫什么| 怀孕初期有什么症状| 荨麻疹有什么忌口| 政五行属什么| 什么时间进伏| 废品收入计入什么科目| 为什么不建议治疗幽门螺杆菌| 吃葵花籽有什么好处和坏处吗| 开心果为什么叫开心果| a2是什么材质| 一路长虹是什么意思| 月台是什么意思| 腹膜炎吃什么药| 神经衰弱看什么科| 血管痉挛是什么原因引起的| 美联储加息意味着什么| 什么叫精神分裂症| 昱怎么读音是什么| 原浆是什么意思| 肺不好吃什么| 泰山石敢当什么意思| 临床治愈什么意思| 结婚6年是什么婚| 吃维生素b族有什么好处| 嗓子痒控制不住咳嗽是什么原因| 玉皇大帝的老婆叫什么| 47岁属什么| 挑担是什么意思| 后脑勺发热是什么原因| 的确良是什么面料| 日干是什么| 窦炎症是什么病| 老虎头是什么牌子衣服| 蜜蜂的尾巴有什么作用| 防晒霜什么牌子好| 咽炎挂什么科| 钛色是什么颜色| 酉时左眼跳是什么预兆| 维生素h是什么| 执业药师是干什么的| 78岁属什么| 头胀是什么原因导致的| 验孕棒两条杠什么意思| 迷恋一个人说明什么| 内退是什么意思| 法界是什么意思| 鑫字属于五行属什么| 什么蔬菜补铁| 挖矿是什么| 小鸟吃什么食物| 色织布是什么面料| 杨梅不能与什么同吃| 白眼球有红血丝是什么原因| 牛黄解毒片不能和什么药一起吃| 太阳出来我爬山坡是什么歌| 季付是什么意思| 异卵双胞胎什么意思| 客车是什么车| 一条线是什么意思| 老抽和生抽有什么区别| 肝回声细密是什么意思| 新生儿嘴唇发紫是什么原因| 离职什么意思| 2e是什么意思| 移徙是什么意思| 脑门出汗多是什么原因| 6月24是什么日子| 早上起床手指肿胀是什么原因| 女生喜欢男生什么行为| 教师节唱什么歌| 园字五行属什么| 甲状腺低回声什么意思| 手足口不能吃什么食物| 全身性疾病是什么意思| 冠状沟溃疡是什么病| 生育酚是什么| 阴部痒是什么原因| 兆后面的单位是什么| 益生菌不能和什么一起吃| 为什么不能送手表| 儿童肠炎吃什么药| 尿道炎用什么药治疗| 1971属什么| 舌头破了是什么原因| 百度Jump to content

灵魂契合是什么意思

From Wikipedia, the free encyclopedia
百度   本报北京3月24日电(记者潘跃)近日,受习近平总书记委托,中共中央政治局常委、全国政协主席汪洋代表十九届中共中央,逐一走访了各民主党派中央和全国工商联,并同各民主党派中央和全国工商联的领导班子成员座谈。

In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not. Logical systems are decidable if membership in their set of logically valid formulas (or theorems) can be effectively determined. A theory (set of sentences closed under logical consequence) in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory. Many important problems are undecidable, that is, it has been proven that no effective method for determining membership (returning a correct answer after finite, though possibly very long, time in all cases) can exist for them.

Decidability of a logical system

[edit]

Each logical system comes with both a syntactic component, which among other things determines the notion of provability, and a semantic component, which determines the notion of logical validity. The logically valid formulas of a system are sometimes called the theorems of the system, especially in the context of first-order logic where G?del's completeness theorem establishes the equivalence of semantic and syntactic consequence. In other settings, such as linear logic, the syntactic consequence (provability) relation may be used to define the theorems of a system.

A logical system is decidable if there is an effective method for determining whether arbitrary formulas are theorems of the logical system. For example, propositional logic is decidable, because the truth-table method can be used to determine whether an arbitrary propositional formula is logically valid.

First-order logic is not decidable in general; in particular, the set of logical validities in any signature that includes equality and at least one other predicate with two or more arguments is not decidable.[1] Logical systems extending first-order logic, such as second-order logic and type theory, are also undecidable.

The validities of monadic predicate calculus with identity are decidable, however. This system is first-order logic restricted to those signatures that have no function symbols and whose relation symbols other than equality never take more than one argument.

Some logical systems are not adequately represented by the set of theorems alone. (For example, Kleene's logic has no theorems at all.) In such cases, alternative definitions of decidability of a logical system are often used, which ask for an effective method for determining something more general than just validity of formulas; for instance, validity of sequents, or the consequence relation {(Г, A) | Г ? A} of the logic.

Decidability of a theory

[edit]

A theory is a set of formulas, often assumed to be closed under logical consequence. Decidability for a theory concerns whether there is an effective procedure that decides whether the formula is a member of the theory or not, given an arbitrary formula in the signature of the theory. The problem of decidability arises naturally when a theory is defined as the set of logical consequences of a fixed set of axioms.

There are several basic results about decidability of theories. Every (non-paraconsistent) inconsistent theory is decidable, as every formula in the signature of the theory will be a logical consequence of, and thus a member of, the theory. Every complete recursively enumerable first-order theory is decidable. An extension of a decidable theory may not be decidable. For example, there are undecidable theories in propositional logic, although the set of validities (the smallest theory) is decidable.

A consistent theory that has the property that every consistent extension is undecidable is said to be essentially undecidable. In fact, every consistent extension will be essentially undecidable. The theory of fields is undecidable but not essentially undecidable. Robinson arithmetic is known to be essentially undecidable, and thus every consistent theory that includes or interprets Robinson arithmetic is also (essentially) undecidable.

Examples of decidable first-order theories include the theory of real closed fields, and Presburger arithmetic, while the theory of groups and Robinson arithmetic are examples of undecidable theories.

Some decidable theories

[edit]

Some decidable theories include (Monk 1976, p. 234):[2]

Methods used to establish decidability include quantifier elimination, model completeness, and the ?o?-Vaught test.

Some undecidable theories

[edit]

Some undecidable theories include:[2]

  • The set of logical validities in any first-order signature with equality and either: a relation symbol of arity no less than 2, or two unary function symbols, or one function symbol of arity no less than 2, established by Trakhtenbrot in 1953.
  • The first-order theory of the natural numbers with addition, multiplication, and equality, established by Tarski and Andrzej Mostowski in 1949.
  • The first-order theory of the rational numbers with addition, multiplication, and equality, established by Julia Robinson in 1949.
  • The first-order theory of groups, established by Alfred Tarski in 1953.[3] Remarkably, not only the general theory of groups is undecidable, but also several more specific theories, for example (as established by Mal'cev 1961) the theory of finite groups. Mal'cev also established that the theory of semigroups and the theory of rings are undecidable. Robinson established in 1949 that the theory of fields is undecidable.
  • Robinson arithmetic (and therefore any consistent extension, such as Peano arithmetic) is essentially undecidable, as established by Raphael Robinson in 1950.
  • The first-order theory with equality and two function symbols.[4]

The interpretability method is often used to establish undecidability of theories. If an essentially undecidable theory T is interpretable in a consistent theory S, then S is also essentially undecidable. This is closely related to the concept of a many-one reduction in computability theory.

Semidecidability

[edit]

A property of a theory or logical system weaker than decidability is semidecidability. A theory is semidecidable if there is a well-defined method whose result, given an arbitrary formula, arrives as positive, if the formula is in the theory; otherwise, may never arrive at all; otherwise, arrives as negative. A logical system is semidecidable if there is a well-defined method for generating a sequence of theorems such that each theorem will eventually be generated. This is different from decidability because in a semidecidable system there may be no effective procedure for checking that a formula is not a theorem.

Every decidable theory or logical system is semidecidable, but in general the converse is not true; a theory is decidable if and only if both it and its complement are semi-decidable. For example, the set of logical validities V of first-order logic is semi-decidable, but not decidable. In this case, it is because there is no effective method for determining for an arbitrary formula A whether A is not in V. Similarly, the set of logical consequences of any recursively enumerable set of first-order axioms is semidecidable. Many of the examples of undecidable first-order theories given above are of this form.

Relationship with completeness

[edit]

Decidability should not be confused with completeness. For example, the theory of algebraically closed fields is decidable but incomplete, whereas the set of all true first-order statements about nonnegative integers in the language with + and × is complete but undecidable. Unfortunately, as a terminological ambiguity, the term "undecidable statement" is sometimes used as a synonym for independent statement.

Relationship to computability

[edit]

As with the concept of a decidable set, the definition of a decidable theory or logical system can be given either in terms of effective methods or in terms of computable functions. These are generally considered equivalent per Church's thesis. Indeed, the proof that a logical system or theory is undecidable will use the formal definition of computability to show that an appropriate set is not a decidable set, and then invoke Church's thesis to show that the theory or logical system is not decidable by any effective method (Enderton 2001, pp. 206ff.).

In context of games

[edit]

Some games have been classified as to their decidability:

  • Mate in n in infinite chess (with limitations on rules and gamepieces) is decidable.[5][6] However, there are positions (with finitely many pieces) that are forced wins, but not mate in n for any finite n.[7]
  • Some team games with imperfect information on a finite board (but with unlimited time) are undecidable.[8]

See also

[edit]

References

[edit]

Notes

[edit]
  1. ^ Boris Trakhtenbrot (1953). "On recursive separability". Doklady AN SSSR (in Russian). 88: 935–956.
  2. ^ a b Monk, Donald (1976). Mathematical Logic. Springer. p. 279. ISBN 9780387901701.
  3. ^ Tarski, A.; Mostovski, A.; Robinson, R. (1953), Undecidable Theories, Studies in Logic and the Foundation of Mathematics, North-Holland, Amsterdam, ISBN 9780444533784 {{citation}}: ISBN / Date incompatibility (help)
  4. ^ Gurevich, Yuri (1976). "The Decision Problem for Standard Classes". J. Symb. Log. 41 (2): 460–464. CiteSeerX 10.1.1.360.1517. doi:10.1017/S0022481200051513. S2CID 798307. Retrieved 5 August 2014.
  5. ^ Mathoverflow.net/Decidability-of-chess-on-an-infinite-board Decidability-of-chess-on-an-infinite-board
  6. ^ Brumleve, Dan; Hamkins, Joel David; Schlicht, Philipp (2012). "The Mate-in-n Problem of Infinite Chess Is Decidable". Conference on Computability in Europe. Lecture Notes in Computer Science. Vol. 7318. Springer. pp. 78–88. arXiv:1201.5597. doi:10.1007/978-3-642-30870-3_9. ISBN 978-3-642-30870-3. S2CID 8998263.
  7. ^ "Lo.logic – Checkmate in $\omega$ moves?".
  8. ^ Poonen, Bjorn (2014). "10. Undecidable Problems: A Sampler: §14.1 Abstract Games". In Kennedy, Juliette (ed.). Interpreting G?del: Critical Essays. Cambridge University Press. pp. 211–241 See p. 239. arXiv:1204.0299. CiteSeerX 10.1.1.679.3322. ISBN 9781107002661.

Bibliography

[edit]
右手发麻是什么病的前兆 梦见老虎狮子是什么预兆 心血管狭窄吃什么药 细菌感染是什么原因 生气吃什么药可以顺气
pos什么意思 当归长什么样 kitty是什么意思 什么的莲蓬 1月24日什么星座
3月5日什么星座 什么是品牌 不典型增生是什么意思 小鹿乱撞是什么意思 肉刺用什么药膏能治好
苍白的什么 刘备和刘邦是什么关系 亲额头代表什么意思 什么地生长 天蝎属于什么象星座
6月27是什么星座hcv8jop4ns3r.cn 护理专业是做什么的hcv9jop5ns4r.cn 腰椎退变是什么意思hcv7jop5ns0r.cn 今天是什么纪念日hcv8jop1ns7r.cn 男人送女人项链代表什么hcv9jop3ns5r.cn
流量加油包是什么意思hcv8jop0ns7r.cn 海参不能和什么一起吃hcv8jop3ns3r.cn 多管闲事是什么意思hcv8jop3ns7r.cn 大姨妈期间适合吃什么水果hcv9jop4ns5r.cn 04属什么生肖hcv8jop2ns2r.cn
眼睛模糊吃什么好hcv9jop5ns0r.cn 什么情况下做肠镜hcv8jop1ns2r.cn 开塞露用多了有什么副作用hcv9jop3ns5r.cn 偏头痛什么症状hcv7jop5ns3r.cn ip什么意思hcv8jop2ns9r.cn
脊髓病变是什么病hcv9jop1ns7r.cn 十月底是什么星座hcv8jop2ns8r.cn 怀孕初期怕冷是什么原因hcv9jop1ns5r.cn 二月二十是什么星座wmyky.com 今天农历什么日子hcv8jop8ns0r.cn
百度