牡丹什么时候开放| 元参别名叫什么| 户主有什么权利| dq什么意思| 龙涎香是什么| 阴道菌群失调用什么药| 招风耳是什么意思| 手脱皮用什么药膏最好| 煎牛排用什么油| 文定之喜是什么意思| 什么的垂下| 种植牙有什么风险和后遗症| 芥子是什么意思| 难耐是什么意思| 脉跳的快是什么原因| 运动后喝什么水最好| 梦见下大雨是什么意思| 身份证号码代表什么| 年轻人能为世界做什么| 网罗是什么意思| 胃肠镜能检查出什么病| 我不知道你在说什么英文| 为什么萤火虫会发光| 六害是什么意思| 软开是什么| 破涕为笑是什么意思| 什么是唐卡| 人肉什么味道| 人心果什么时候成熟| 负罪感是什么意思| 两侧肋骨疼是什么原因| 酸菜鱼加什么配菜好吃| 白头翁是什么| 一步之遥是什么意思| 五月23是什么星座| 塘角鱼吃什么食物| 什么网名| 乳头痛什么问题| 坏血病是什么| 尿糖一个加号是什么意思| 不善言辞是什么意思| 怀孕初期吃什么菜| 黑色裤子配什么颜色t恤| 12月是什么星座的| 什么牌子的燕麦片最好| 肾结石吃什么药能化石| 铁观音什么季节喝最好| 黄瓜不能和什么食物一起吃| 调月经吃什么药好| 三十八岁属什么生肖| 脱口秀是什么意思| 心眼小是什么意思| 感冒不能吃什么水果| 热痱子长什么样| 郡主是什么意思| 小211是什么意思| 女生适合什么工作| 腿硬邦邦的是什么原因| 横死是什么意思| 宫外孕和宫内孕有什么区别| 未免是什么意思| 荔枝什么时候成熟| 倾倒是什么意思| 哦耶是什么意思| 重金属中毒喝什么解毒| 早餐吃什么最有营养又减肥| 酷儿是什么意思| tomboy什么意思| 金与什么相生相克| 优越感是什么意思| 囊肿是什么意思| 舌裂是什么原因造成的| 辩证法是什么| 小便带血是什么原因女性| 花牛是什么| 乐什么什么什么成语| 路由器什么牌子好| 牛奶盒属于什么垃圾| 颈椎疼吃什么药| 谨守是什么意思| 拉肚子是什么原因造成的| 忌出行是什么意思| 姜红枣红糖一起煮有什么效果| 梦见妈妈出轨预示什么意思| 小姑子是什么关系| 后中长是什么意思| 醋泡葡萄干有什么功效和作用| 拍拖是什么意思| 人为什么会失眠| 男人断眉代表什么| 风湿关节炎用什么药| 阴间到底是什么| 湖北属于什么地区| 化学性肝损伤是什么意思| 阴阳代表什么数字| 社保断交有什么影响| 燥是什么意思| 手臂发麻是什么原因引起的| 什么是薪级工资| 垂头丧气是什么意思| 十二指肠球部溃疡a1期是什么意思| 小学生什么时候考试| 什么叫散瞳| 狐臭去医院挂什么科| 优势是什么意思| 一九九八年属什么生肖| 嘴唇发麻什么病兆| 妈富隆是什么药| 红烧鱼用什么鱼| 什么叫高血脂| 稻谷是什么| 为什么会有湿气| 梦见捡鸡蛋是什么预兆| 背德是什么意思| 女性尿路感染用什么药| 嗓子干疼吃什么药| 扁桃体化脓是什么原因引起的| 什么是蛋白质| 低压低有什么危害| 做梦捡到钱了什么预兆| 脾胃虚弱吃什么药调理| 早上8点是什么时辰| 鸡血藤有什么作用| 开边珠牛皮是什么意思| usp是什么意思| 地球代表什么生肖| 多吃丝瓜有什么好处和坏处| 双子座和什么座最不配| 什么是地沟油| 玻璃五行属什么| 玻璃心什么意思| 食指是什么经络| 雪蛤是什么| 口臭看什么科室| 子宫彩超能检查出什么| 痒痒粉在药店叫什么| 头疼吃什么药好| 知柏地黄丸对男性功能有什么帮助| 佛家思想的核心是什么| 什么是同源染色体| 怀孕小肚子疼是什么原因| 什么血型最好| 梦见粽子是什么预兆| 人工虎骨粉是什么做的| 贫血孕妇吃什么补血最快| 女孩子学什么专业比较好| 武夷山岩茶属于什么茶| 为什么脚底板会痛| 长卿是什么意思| 胸有成竹是什么意思| hbeab阳性是什么意思| 窍门是什么意思| 叶倩文属什么生肖| 肚子胀是什么原因引起的| 肌酸什么时候喝比较好| 三宫六院是什么意思| 看日出是什么生肖| 痱子粉和爽身粉有什么区别| 6月20号什么星座| 非即食是什么意思| 店里来猫是什么兆头| 晚上老咳嗽是什么原因| 胆囊息肉是什么原因造成的| mlb是什么档次| 什么快递便宜| 阴历3月是什么星座| 双鱼座和什么星座最配| 为什么睡觉老是流口水| 叶五行属什么| 月经太多是什么原因| 干火重吃什么药管用| 固体饮料是什么意思| 李子有什么功效| 发扬什么词语搭配| 小孩支气管炎吃什么药| 破月是什么意思| 六月二十六是什么星座| 脑肿瘤有什么症状| 珍珠状丘疹有什么危害| 23是什么意思| 活色生香什么意思| 颜值控是什么意思| 青岛是鲁什么| 手指甲有竖纹什么原因| 1939年属什么生肖| 葫芦什么时候种最好| 杨梅是什么季节的水果| 包皮看什么科| 备货是什么意思| 什么情况需要割包皮| 欲是什么生肖| 血糖可以吃什么水果| 楞头青是什么意思| 老日念什么| 佳人是什么生肖| 小孩磨牙是什么原因引起的| 胆在什么位置| 车厘子和樱桃有什么区别| 前列腺回声欠均匀什么意思| 梦见打别人是什么意思| 龟头有红点用什么药| 葡萄球菌感染是什么原因引起的| 血糖高可以吃什么主食| 梦到装修房子是什么征兆| 塞屁股的退烧药叫什么| 闺蜜是什么样的关系| 枧水是什么| 为什么会长寻常疣| 伯爵是什么意思| 什么的雪人| 丙磺舒是什么药| 什么情况下容易怀孕| alt是什么| 什么样的天山| 地道战在河北什么地方| 属猪生什么属相宝宝好| 鱼和熊掌不可兼得什么意思| 红枣什么时候吃最好| 陕西八大怪是什么| 抖腿是什么原因| 切除子宫对身体有什么影响| 肝郁脾虚吃什么药效果最好| 男人占有欲强说明什么| 迈巴赫是什么车| 租赁费计入什么科目| 中的五行属性是什么| 爱出汗是什么原因| 师傅和师父有什么区别| 秘语是什么意思| 猫哭了代表什么预兆| 二月初四是什么星座| 魂牵梦绕是什么意思| 挖苦是什么意思| 天秤座后面是什么星座| 浅表性胃炎伴糜烂吃什么药效果好| 什么是手性碳原子| 拉水便是什么原因| 腿肿脚肿是什么病的前兆| 殿试是什么意思| 饱和脂肪酸是什么| spo2过低是什么意思| 脱发吃什么| 早搏是什么原因引起的| 伽马刀是什么意思| 未央什么意思| 匆匆那年是什么意思| 什么是伤官| 蚕除了吃桑叶还能吃什么| 头皮毛囊炎用什么洗发水| 肾炎吃什么药好| 金匮肾气丸有什么功效| 风湿性关节炎吃什么药| 肖像是什么意思| 婢女是什么意思| 尿隐血是什么意思| 急支糖浆是什么梗| 大便干燥吃什么药| 人为什么要喝水| 失眠是什么意思| 结石排出来是什么感觉| 牡丹花是什么颜色的| 疣是什么原因造成的| 周瑜为什么打黄盖| 脑梗是什么原因| 百度Jump to content

From Wikipedia, the free encyclopedia
百度 一是着力加强重点领域立法,完善以宪法为核心的中国特色社会主义法律体系。

Neurorobotics is the combined study of neuroscience, robotics, and artificial intelligence. It is the science and technology of embodied autonomous neural systems. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural networks, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). Such neural systems can be embodied in machines with mechanic or any other forms of physical actuation. This includes robots, prosthetic or wearable systems but also, at smaller scale, micro-machines and, at the larger scales, furniture and infrastructures.

Neurorobotics is that branch of neuroscience with robotics, which deals with the study and application of science and technology of embodied autonomous neural systems like brain-inspired algorithms. It is based on the idea that the brain is embodied and the body is embedded in the environment. Therefore, most neurorobots are required to function in the real world, as opposed to a simulated environment.[1]

Beyond brain-inspired algorithms for robots neurorobotics may also involve the design of brain-controlled robot systems.[2][3][4]

Major classes of models

[edit]

Neurorobots can be divided into various major classes based on the robot's purpose. Each class is designed to implement a specific mechanism of interest for study. Common types of neurorobots are those used to study motor control, memory, action selection, and perception.

Locomotion and motor control

[edit]

Neurorobots are often used to study motor feedback and control systems, and have proved their merit in developing controllers for robots. Locomotion is modeled by a number of neurologically inspired theories on the action of motor systems. Locomotion control has been mimicked using models or central pattern generators, clumps of neurons capable of driving repetitive behavior, to make four-legged walking robots.[5] Other groups have expanded the idea of combining rudimentary control systems into a hierarchical set of simple autonomous systems. These systems can formulate complex movements from a combination of these rudimentary subsets.[6] This theory of motor action is based on the organization of cortical columns, which progressively integrate from simple sensory input into a complex afferent signals, or from complex motor programs to simple controls for each muscle fiber in efferent signals, forming a similar hierarchical structure.

Another method for motor control uses learned error correction and predictive controls to form a sort of simulated muscle memory. In this model, awkward, random, and error-prone movements are corrected for using error feedback to produce smooth and accurate movements over time. The controller learns to create the correct control signal by predicting the error. Using these ideas, robots have been designed which can learn to produce adaptive arm movements[7] or to avoid obstacles in a course.

Learning and memory systems

[edit]

Robots designed to test theories of animal memory systems. Many studies examine the memory system of rats, particularly the rat hippocampus, dealing with place cells, which fire for a specific location that has been learned.[8][9] Systems modeled after the rat hippocampus are generally able to learn mental maps of the environment, including recognizing landmarks and associating behaviors with them, allowing them to predict the upcoming obstacles and landmarks.[9]

Another study has produced a robot based on the proposed learning paradigm of barn owls for orientation and localization based on primarily auditory, but also visual stimuli. The hypothesized method involves synaptic plasticity and neuromodulation,[10] a mostly chemical effect in which reward neurotransmitters such as dopamine or serotonin affect the firing sensitivity of a neuron to be sharper.[11] The robot used in the study adequately matched the behavior of barn owls.[12] Furthermore, the close interaction between motor output and auditory feedback proved to be vital in the learning process, supporting active sensing theories that are involved in many of the learning models.[10]

Neurorobots in these studies are presented with simple mazes or patterns to learn. Some of the problems presented to the neurorobot include recognition of symbols, colors, or other patterns and execute simple actions based on the pattern. In the case of the barn owl simulation, the robot had to determine its location and direction to navigate in its environment.

Action selection and value systems

[edit]

Action selection studies deal with negative or positive weighting to an action and its outcome. Neurorobots can and have been used to study simple ethical interactions, such as the classical thought experiment where there are more people than a life raft can hold, and someone must leave the boat to save the rest. However, more neurorobots used in the study of action selection contend with much simpler persuasions such as self-preservation or perpetuation of the population of robots in the study. These neurorobots are modeled after the neuromodulation of synapses to encourage circuits with positive results.[11][13]

In biological systems, neurotransmitters such as dopamine or acetylcholine positively reinforce neural signals that are beneficial. One study of such interaction involved the robot Darwin VII, which used visual, auditory, and a simulated taste input to "eat" conductive metal blocks. The arbitrarily chosen good blocks had a striped pattern on them while the bad blocks had a circular shape on them. The taste sense was simulated by conductivity of the blocks. The robot had positive and negative feedbacks to the taste based on its level of conductivity. The researchers observed the robot to see how it learned its action selection behaviors based on the inputs it had.[14] Other studies have used herds of small robots which feed on batteries strewn about the room, and communicate its findings to other robots.[15]

Sensory perception

[edit]

Neurorobots have also been used to study sensory perception, particularly vision. These are primarily systems that result from embedding neural models of sensory pathways in automatas. This approach gives exposure to the sensory signals that occur during behavior and also enables a more realistic assessment of the degree of robustness of the neural model. It is well known that changes in the sensory signals produced by motor activity provide useful perceptual cues that are used extensively by organisms. For example, researchers have used the depth information that emerges during replication of human head and eye movements to establish robust representations of the visual scene.[16][17]

Biological robots

[edit]

Biological robots are not officially neurorobots in that they are not neurologically inspired AI systems, but actual neuron tissue wired to a robot. This employs the use of cultured neural networks to study brain development or neural interactions. These typically consist of a neural culture raised on a multielectrode array (MEA), which is capable of both recording the neural activity and stimulating the tissue. In some cases, the MEA is connected to a computer which presents a simulated environment to the brain tissue and translates brain activity into actions in the simulation, as well as providing sensory feedback[18] The ability to record neural activity gives researchers a window into a brain, which they can use to learn about a number of the same issues neurorobots are used for.

An area of concern with the biological robots is ethics. Many questions are raised about how to treat such experiments. The central question concerns consciousness and whether or not the rat brain experiences it. There are many theories about how to define consciousness.[19][20]

Implications for neuroscience

[edit]

Neuroscientists benefit from neurorobotics because it provides a blank slate to test various possible methods of brain function in a controlled and testable environment. While robots are more simplified versions of the systems they emulate, they are more specific, allowing more direct testing of the issue at hand.[10][21] They also have the benefit of being accessible at all times, while it is more difficult to monitor large portions of a brain while the human or animal is active, especially individual neurons.[22]

The development of neuroscience has produced neural treatments. These include pharmaceuticals and neural rehabilitation.[23] Progress is dependent on an intricate understanding of the brain and how exactly it functions. It is difficult to study the brain, especially in humans, due to the danger associated with cranial surgeries. Neurorobots can improved the range of tests and experiments that can be performed in the study of neural processes.

See also

[edit]

References

[edit]
  1. ^ Chiel HJ, Beer RD (December 1997). "The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment". Trends in Neurosciences. 20 (12): 553–7. doi:10.1016/s0166-2236(97)01149-1. PMID 9416664. S2CID 5634365.
  2. ^ Vannucci L, Ambrosano A, Cauli N, Albanese U, Falotico E, Ulbrich S, et al. (1 November 2015). "A visual tracking model implemented on the iCub robot as a use case for a novel neurorobotic toolkit integrating brain and physics simulation". 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). pp. 1179–1184. doi:10.1109/HUMANOIDS.2015.7363512. ISBN 978-1-4799-6885-5. S2CID 206713899.
  3. ^ R?hrbein F, Laschi C, Walter F, Bohte S, Falotico E, Tolu S, Ulbrich S (September 2015). Brain-Supported Learning Algorithms for Robots (PDF). Proceedings of the EuroAsianPacific Joint Conference on Cognitive Science/4th European Conference on Cognitive Science/11th International Conference on Cognitive Science. Torino, Italy. Retrieved 9 April 2017.
  4. ^ Arrowsmith E (2 October 2012). "A Basic Neurorobotics Platform Using the Neurosky Mindwave". Ern Arrowsmith. Retrieved 9 April 2017 – via wordpress.com.
  5. ^ Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM (March 2007). "From swimming to walking with a salamander robot driven by a spinal cord model" (PDF). Science. 315 (5817). New York, N.Y.: 1416–20. Bibcode:2007Sci...315.1416I. doi:10.1126/science.1138353. PMID 17347441. S2CID 3193002.
  6. ^ Giszter SF, Moxon KA, Rybak IA, Chapin JK (November 2001). "Neurobiological and neurorobotic approaches to control architectures for a humanoid motor system". Robotics and Autonomous Systems. 37 (2–3): 219–235. doi:10.1016/S0921-8890(01)00159-2.
  7. ^ Eskiizmirliler S, Forestier N, Tondu B, Darlot C (May 2002). "A model of the cerebellar pathways applied to the control of a single-joint robot arm actuated by McKibben artificial muscles". Biological Cybernetics. 86 (5): 379–394. doi:10.1007/s00422-001-0302-1. PMID 11984652. S2CID 8051621.
  8. ^ O'Keefe J, Nadel L (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press. ISBN 978-0-19-857206-0.
  9. ^ a b Matari? MJ (March 1998). "Behavior-based robotics as a tool for synthesis of artificial behavior and analysis of natural behavior". Trends in Cognitive Sciences. 2 (3): 82–6. doi:10.1016/s1364-6613(98)01141-3. PMID 21227083. S2CID 17860567.
  10. ^ a b c Rucci M, Bullock D, Santini F (January 2007). "Integrating robotics and neuroscience: brains for robots, bodies for brains". Advanced Robotics. 21 (10): 1115–1129. doi:10.1163/156855307781389428. S2CID 18575829.
  11. ^ a b Cox BR, Krichmar JL (September 2009). "Neuromodulation as a robot controller". IEEE Robotics & Automation Magazine. 16 (3): 72–80. doi:10.1109/mra.2009.933628. S2CID 16807722.
  12. ^ Rucci M, Edelman GM, Wray J (February 1999). "Adaptation of orienting behavior: From the barn owl to a robotic system". IEEE Transactions on Robotics and Automation. 15 (1): 96–110. doi:10.1109/70.744606. S2CID 8061163.
  13. ^ Hasselmo ME, Hay J, Ilyn M, Gorchetchnikov A (2002). "Neuromodulation, theta rhythm and rat spatial navigation". Neural Networks. 15 (4–6): 689–707. doi:10.1016/s0893-6080(02)00057-6. PMID 12371520.
  14. ^ Krichmar JL, Edelman GM (August 2002). "Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device". Cerebral Cortex. 12 (8). New York, N.Y.: 818–30. doi:10.1093/cercor/12.8.818. PMID 12122030.
  15. ^ Doya K, Uchibe E (June 2005). "The cyber rodent project: Exploration of adaptive mechanisms for self-preservation and self-reproduction". Adaptive Behavior. 13 (2): 149–160. doi:10.1177/105971230501300206. S2CID 35959217.
  16. ^ Santini F, Rucci M (February 2007). "Active estimation of distance in a robotic system that replicates human eye movement". Robotics and Autonomous Systems. 55 (2): 107–121. doi:10.1016/j.robot.2006.07.001.
  17. ^ Kuang X, Gibson M, Shi BE, Rucci M (July 2012). "Active vision during coordinated head/eye movements in a humanoid robot". IEEE Transactions on Robotics. 28 (6): 1423–1430. doi:10.1109/TRO.2012.2204513. S2CID 17969004.
  18. ^ Demarse TB, Wagenaar DA, Blau AW, Potter SM (2001). "The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies". Autonomous Robots. 11 (3): 305–310. doi:10.1023/a:1012407611130. PMC 2440704. PMID 18584059.
  19. ^ Warwick K (September 2010). "Implications and consequences of robots with biological brains". Ethics and Information Technology. 12 (3): 223–234. doi:10.1007/s10676-010-9218-6. S2CID 1263639.
  20. ^ Bentzen MM (2014). "Brains on Wheels: Theoretical and Ethical Issues in Bio-Robotics.". Sociable Robots and the Future of Social Relations. IOS Press. pp. 245–251. doi:10.3233/978-1-61499-480-0-245. S2CID 67790806.
  21. ^ Niu CM, Jalaleddini K, Sohn WJ, Rocamora J, Sanger TD, Valero-Cuevas FJ (April 2017). "Neuromorphic meets neuromechanics, part I: the methodology and implementation". Journal of Neural Engineering. 14 (2): 025001. Bibcode:2017JNEng..14b5001N. doi:10.1088/1741-2552/aa593c. PMC 5540665. PMID 28084217.
  22. ^ Jalaleddini K, Minos Niu C, Chakravarthi Raja S, Joon Sohn W, Loeb GE, Sanger TD, Valero-Cuevas FJ (April 2017). "Neuromorphic meets neuromechanics, part II: the role of fusimotor drive". Journal of Neural Engineering. 14 (2): 025002. Bibcode:2017JNEng..14b5002J. doi:10.1088/1741-2552/aa59bd. PMC 5394229. PMID 28094764.
  23. ^ Bach-y-Rita P (July 1999). "Theoretical aspects of sensory substitution and of neurotransmission-related reorganization in spinal cord injury". Spinal Cord. 37 (7): 465–74. doi:10.1038/sj.sc.3100873. PMID 10438112. S2CID 8419555.
[edit]
什么东西最补肾 cindy是什么意思 6月23号什么星座 烫伤了抹什么 腺样体挂什么科
市辖区什么意思 max是什么品牌 树欲静而风不止什么意思 西皮是什么意思 1点到3点是什么时辰
佛系是什么意思啊 什么是支原体感染 爸爸的奶奶叫什么 高血压药什么时候吃最好 槊是什么兵器
为什么会得荨麻疹 风湿性心脏病是什么原因引起的 白羊男喜欢什么样的女生 做胃镜前喝的那个液体是什么 hcg是什么
乳腺结节吃什么药hcv7jop5ns1r.cn 做梦梦到和别人吵架是什么意思hcv8jop1ns7r.cn 蜈蚣最怕什么东西xscnpatent.com 姜什么时候种植最好hcv9jop4ns0r.cn 裸婚什么意思hcv7jop4ns6r.cn
朕是什么时候开始用的hcv9jop2ns3r.cn 大乌叶是什么茶hcv9jop8ns1r.cn 假牛肉干是什么做的hcv8jop3ns9r.cn uu解脲脲原体阳性是什么意思hcv8jop4ns4r.cn 阳虚吃什么好hcv9jop3ns8r.cn
探病是什么意思hcv8jop2ns9r.cn 骨质疏松有什么症状表现hcv7jop4ns8r.cn 头疼想吐是什么原因hcv9jop2ns5r.cn 白萝卜煮水喝有什么功效jiuxinfghf.com 梦见抓龙虾是什么意思hcv8jop0ns3r.cn
骨髓瘤是什么原因引起的hcv9jop0ns4r.cn 拉k是什么意思hcv7jop9ns5r.cn 脚底疼是什么原因引起的hcv7jop6ns6r.cn 健康是什么意思hcv9jop0ns9r.cn 一什么月亮hcv8jop3ns0r.cn
百度