尿检潜血是什么意思| 人言可畏什么意思| 黑乎乎的什么| 去年属什么生肖| 指甲变空是什么原因| 三农是什么| 药食同源是什么意思| 丝瓜为什么会变黑| 孩子老打嗝是什么原因| 天气热吃什么好| 大泽土是什么生肖| 常字五行属什么| 小便无力吃什么药| 井柏然原名叫什么| 咽炎吃什么好| 嗦是什么意思| 舌头辣辣的是什么原因| 什么仗人势| 大咖是什么意思| 玄关什么意思| 面试是什么意思| 待寝什么意思| 紧急避孕药什么时候吃最好| 什么饮料好喝又健康| 化疗后骨髓抑制是什么意思| 铜锣湾有什么好玩的| 孕妇什么时候做nt| 是什么字| 摆拍是什么意思| 卵泡生成素高是什么原因| 头颈出汗多是什么原因| 七月十二是什么星座| 肠癌是什么原因造成的| 钨砂是什么东西| 脾不统血吃什么中成药| 空你几哇什么意思| 彩超是检查什么的| 外阴瘙痒吃什么药| 洗澡用什么香皂好| 银花有焰万家春是什么生肖| 起什么网名好听| 吃什么变白| 黄占读什么| 射进去有什么感觉| 没主见是什么意思| 乳腺导管扩张是什么意思严重吗| 棋逢对手下一句是什么| 鼻息肉长什么样| 吃姜对身体有什么好处| 叶脉是什么| 梦见被追杀预示什么| 乌龟死了是什么样子| o血型的人有什么特点| 产生幻觉是什么原因| 微盟是做什么的| 住房公积金缴存基数是什么意思| 绿豆不能跟什么一起吃| 球麻痹是什么病| 人体缺少蛋白质会有什么症状| 9月什么星座| 什么人容易得阿尔兹海默症| 熬夜吃什么水果好| 渗液是什么意思| 明年是什么年| 倒数是什么| 为什么手臂上有很多很小的点| 拔智齿后吃什么恢复快| 母的第三笔是什么| 四什么八什么| 5月15日是什么星座| lycra是什么面料| 茶叶杀青是什么意思| 只要睡觉就做梦是什么原因| 唐氏筛查都查些什么| 女人腰疼是什么妇科病| 宝宝大便酸臭味是什么原因| 消化酶是什么| 发烧呕吐吃什么药| 桃胶是什么东西| 党参有什么功效| 月蚀是什么意思| 苋菜长什么样| 猝死是什么意思| 血压高有什么症状| 炖鸡放什么调料| 十指不沾阳春水什么意思| 假菌丝是什么意思| 咳嗽有黄痰吃什么药| 急性上呼吸道感染是什么引起的| 保释金是什么意思| 中度脂肪肝吃什么药| 今年三十岁属什么生肖| soda是什么意思| 6月8日是什么星座| 发烧咳嗽吃什么药| 肝肿瘤吃什么食物好| 独生子女证办理需要什么材料| 孕妇dha什么时候吃| 楼梯步数有什么讲究| 食管在什么位置图片| 猪沙肝是什么部位| 解脲脲原体阳性是什么| 58年属什么生肖| 世界大同是什么意思| 13颗珠子的手串什么意思| 云南为什么叫云南| 冷得什么| 沉疴是什么意思| 尿道口灼热感吃什么药最快| 为什么做噩梦| 替代品是什么意思| m的意思是什么| 置之死地而后生是什么意思| 7月4号什么星座| 红细胞分布宽度偏低是什么原因| 垂涎什么意思| 吃什么补头发| 1923年属什么生肖| 美背是什么| 营养心脏最好的药是什么药| 牙髓是什么| 做梦梦见马是什么意思| 排卵期和排卵日有什么区别| 去心火喝什么茶好| 拜有利主要是治疗什么| 优是什么意思| 耳朵内痒是什么原因| 回复1是什么意思| 用盐刷牙有什么好处和坏处| 早上11点是什么时辰| 硌人什么意思| 什么是耳石| 偏执什么意思| 打磨工是做什么的| 婚检男性检查什么| 千叶豆腐是什么做的| 达英35是什么药| 晚上一点多是什么时辰| 二便是什么意思| 四十不惑是什么意思| 治疗早泄吃什么药| 腊肉和什么菜炒好吃| 运动员为什么吃香蕉| 真数是什么| 真菌感染是什么| 佳偶天成是什么意思| darker是什么意思| 孕妇能吃什么水果最好| 孩子过敏性咳嗽吃什么药好| 大蒜泡酒有什么功效| 减肥晚餐吃什么好| b细胞淋巴肿瘤是一种什么病| 舌吻是什么感觉| 子宫肌瘤术后吃什么好| 发烧42度是什么概念| 一什么风筝| 肝掌是什么样子| 球是什么生肖| 在什么| 3月10号什么星座| grace是什么意思| 7月15日是什么星座| 一什么阳光| 儿童手指头脱皮什么原因引起的| 镜检是什么| 甲状腺激素高吃什么药| 去香港买什么划算| 痛风吃什么药好| 签注是什么| 来例假吃什么食物好| 斯里兰卡用什么货币| 抖s是什么意思| 马达是什么| 飞机杯什么感觉| 肺痿是什么意思| 大众什么车最贵| 面膜什么牌子好| 白头发有什么方法变黑| 绝经后吃什么能来月经| 一个口一个有念什么| 沙和尚的武器叫什么| 腿上的肉疼是什么原因| 吃什么紧致皮肤抗衰老| 上环后需要注意什么| 滑精是什么原因| 没有淀粉可以用什么代替| 两拐是什么军衔| 什么字五行属水| 低密度脂蛋白胆固醇高是什么意思| 器质性心脏病是什么意思| sakose是什么牌子| 婴儿42天检查什么项目| 牙齿掉了一小块是什么原因| 乔迁新居送什么礼物| rh血型鉴定阳性是什么意思| 白气是什么物态变化| 麻雀吃什么食物| 胃嗳气是什么症状| 三个白念什么| 皮炎是什么症状| 胃食管反流吃什么中成药最好| 女人经期吃什么食物好| 为什么海螺里有大海的声音| 宝宝有口臭是什么原因引起的| 什么的天山| 231是什么意思| 忘情水是什么意思| 大曲是什么| 澳大利亚有什么动物| 流年是什么意思| 白细胞低是什么原因造成的| 指腹为婚是什么意思| 心脏不大是什么意思| 体检前一天晚上吃什么| bl小说是什么意思| 食物中毒吃什么解毒最快| 梦见梳头发是什么意思| 机能鞋是什么意思| 专场是什么意思| 天蝎座什么象星座| 六味地黄丸什么人不能吃| 躲春是什么意思| 7月5日是什么日子| 火供是什么意思| 00年属什么的| 吧唧嘴什么意思| 衣带渐宽终不悔是什么意思| 拖什么东西最轻松| 盆腔炎吃什么消炎药效果好| 孕妇红细胞偏低是什么原因| 康熙是乾隆的什么人| bac是什么意思| 五行属土缺命里缺什么| 走马灯是什么意思| 猕猴桃是什么季节的水果| 九月一日什么节日| 手掌上的三条线分别代表什么| 熳是什么意思| 牙疼买什么药| 经期吃榴莲有什么好处和坏处| 念珠菌性阴道炎用什么药| 吃什么补肾最快最有效| d是什么元素| 月经期间适合吃什么| 启读什么| 生长因子是什么东西| 银耳不能和什么一起吃| 吃毓婷有什么副作用| 农历六月六日是什么节日| 朱元璋是什么朝代| 拉伸有什么好处| 威士忌属于什么酒| 身份证最后一位代表什么| 梦见栽树是什么意思| 哺乳期妈妈感冒了可以吃什么药| 食积是什么意思| 翡翠是什么意思| 月经时间长是什么原因| 小脑萎缩吃什么药好| 97年属什么今年多大| 1月19号什么星座| 饿是什么感觉| 梦见家里办丧事是什么预兆| peni是什么意思| 百度Jump to content

微针是什么

From Wikipedia, the free encyclopedia
(Redirected from Somatosensory cortex)
Touch is a crucial means of receiving information. This photo shows tactile markings identifying stairs for visually impaired people.
百度 美学家朱光潜回忆自己的学习经历时说:“五经之中,我幼时全读的是《书经》《左传》。

The somatosensory system, or somatic sensory system is a subset of the sensory nervous system. The main functions of the somatosensory system are the perception of external stimuli, the perception of internal stimuli, and the regulation of body position and balance (proprioception).[1] It is believed to act as a pathway between the different sensory modalities within the body.[2]

As of 2024 debate continued on the underlying mechanisms,[3] correctness and validity of the somatosensory system model,[4] and whether it impacts emotions in the body.[5]

The somatosensory system has been thought of as having two subdivisions;

  • one for the detection of mechanosensory information related to touch.[6] Mechanosensory information includes that of light touch, vibration, pressure and tension in the skin. Much of this information belongs to the sense of touch which is a general somatic sense in contrast to the special senses of sight, smell, taste, hearing, and balance.[7]
  • one for the nociception detection of pain and temperature.[6] Nociceptory information is that received from pain and temperature that is deemed as harmful (noxious). Thermoreceptors relay temperature information in normal circumstances.[6] Nociceptors are specialised receptors for signals of pain.[8]

The sense of touch in perceiving the environment uses special sensory receptors in the skin called cutaneous receptors. They include mechanoreceptors such as tactile corpuscles that relay information about pressure and vibration; nociceptors, and thermoreceptors for temperature perception.[9]

Stimulation of the receptors activate peripheral sensory neurons that convey signals to the spinal cord that may drive a responsive reflex, and may also be conveyed to the brain for conscious perception. Somatosensory information from the face and head enter the brain via cranial nerves such as the trigeminal nerve.

The neural pathways that go to the brain are structured such that information about the location of the physical stimulus is preserved. In this way, neighboring neurons in the somatosensory cortex represent nearby locations on the skin or in the body, creating a map or sensory homunculus.

Touch communication

[edit]

Tactile signing

[edit]

Tactile signing is a common means of communication used by people with deafblindness. It is based on a sign language or another system of manual communication.

Emotion communication

[edit]

Humans can communicate specific emotions through touch alone including anger, fear, disgust, love, gratitude, and sympathy via touch at much-better-than-chance levels.[10]

Overview

[edit]
This diagram linearly (unless otherwise mentioned) tracks the projections of all known structures that allow for touch to their relevant endpoints in the human brain.

Sensory receptors

[edit]

The two different types of mechanoreceptor in the skin are termed low-threshold mechanoreceptors, and high threshold mechanoreceptors. The four mechanoreceptors in glabrous skin are low-threshold that respond to harmless stimuli. They are innervated by four different afferent fibers. High-threshold mechanoreceptors, respond to harmful stimuli.[1]

Merkel cell nerve endings are found in the basal epidermis and hair follicles; they react to low vibrations (5–15 Hz) and deep static touch such as shapes and edges. Due to having a small receptive field (extremely detailed information), they are used in areas like fingertips the most; they are not covered (shelled) and thus respond to pressures over long periods.

Tactile corpuscles react to moderate vibration (10–50 Hz) and light touch. They are located in the dermal papillae; due to their reactivity, they are primarily located in fingertips and lips. They respond in quick action potentials, unlike Merkel nerve endings. They are responsible for the ability to read Braille and feel gentle stimuli.

Pacinian corpuscles determine gross touch and distinguish rough and soft substances. They react in quick action potentials, especially to vibrations around 250 Hz (even up to centimeters away). They are the most sensitive to vibrations and have large receptor fields. Pacinian corpuscles react only to sudden stimuli so pressures like clothes that are always compressing their shape are quickly ignored. They have also been implicated in detecting the location of touch sensations on handheld tools.[11]

Bulbous corpuscles react slowly and respond to sustained skin stretch. They are responsible for the feeling of object slippage and play a major role in the kinesthetic sense and control of finger position and movement. Merkel and bulbous cells - slow-response - are myelinated; the rest - fast-response - are not. All of these receptors are activated upon pressures that distort their shape causing an action potential.[12][13][14][15]

Somatosensory cortex

[edit]
Gray's Anatomy, figure 759: the sensory tract, showing the pathway (blue) up the spinal cord, through the somatosensory thalamus, to S1 (Brodmann areas 3, 1, and 2), S2, and BA7
Gray's Anatomy, figure 717: detail showing path adjacent to the insular cortex (marked insula in this figure), adjacent to S1, S2, and BA7

The postcentral gyrus is in the parietal lobe and its cortex is the primary somatosensory cortex (Brodmann areas 3, 2 and 1) collectively referred to as S1.

BA3 receives the densest projections from the thalamus. BA3a is involved with the sense of relative position of neighboring body parts and amount of effort being used during movement. BA3b is responsible for distributing somatosensory information, it projects texture information to BA1 and shape and size information to BA2.

Region S2 (secondary somatosensory cortex) divides into Area S2 and parietal ventral area. Area S2 is involved with specific touch perception and is thus integrally linked with the amygdala and hippocampus to encode and reinforce memories.

Parietal ventral area is the somatosensory relay to the premotor cortex and somatosensory memory hub, BA5.

BA5 is the topographically organized somato memory field and association area.

BA1 processes texture info while BA2 processes size and shape information.

Area S2 processes light touch, pain, visceral sensation, and tactile attention.

S1 processes the remaining info (crude touch, pain, temperature).[16][17][18]

BA7 integrates visual and proprioceptive info to locate objects in space.[19][20]

The insular cortex (insula) plays a role in the sense of bodily-ownership, bodily self-awareness, and perception. Insula also plays a role in conveying info about sensual touch, pain, temperature, itch, and local oxygen status. Insula is a highly connected relay and thus is involved in numerous functions.

Structure

[edit]

The somatosensory system is spread through all major parts of the vertebrate body. It consists both of sensory receptors and sensory neurons in the periphery (skin, muscle and organs for example), to deeper neurons within the central nervous system.[7]

General somatosensory pathway

[edit]

All afferent touch/vibration information ascends the spinal cord via the dorsal column-medial lemniscus pathway via gracilis (T7 and below) or cuneatus (T6 and above). Cuneatus sends signals to the cochlear nucleus indirectly via spinal grey matter, this info is used in determining if a perceived sound is just villi noise/irritation. All fibers cross (left becomes right) in the medulla.

A somatosensory pathway will typically have three neurons:[21] first-order, second-order, and third-order.[22]

  1. The first-order neuron is a type of pseudounipolar neuron and always has its cell body in the dorsal root ganglion of the spinal nerve with a peripheral axon innervating touch mechanoreceptors and a central axon synapsing on the second-order neuron. If the somatosensory pathway is in parts of the head or neck not covered by the cervical nerves, the first-order neuron will be the trigeminal nerve ganglia or the ganglia of other sensory cranial nerves).
  2. The second-order neuron has its cell body either in the spinal cord or in the brainstem. This neuron's ascending axons will cross (decussate) to the opposite side either in the spinal cord or in the brainstem.
  3. In the case of touch and certain types of pain, the third-order neuron has its cell body in the ventral posterior nucleus of the thalamus and ends in the postcentral gyrus of the parietal lobe in the primary somatosensory cortex (or S1).

Photoreceptors, similar to those found in the retina of the eye, detect potentially damaging ultraviolet radiation (ultraviolet A specifically), inducing increased production of melanin by melanocytes.[23] Thus tanning potentially offers the skin rapid protection from DNA damage and sunburn caused by ultraviolet radiation (DNA damage caused by ultraviolet B). However, whether this offers protection is debatable, because the amount of melanin released by this process is modest in comparison to the amounts released in response to DNA damage caused by ultraviolet B radiation.[23]

Tactile feedback

[edit]
Touch can result in many different physiological reactions such as laughing at being tickled.

The tactile feedback from proprioception is derived from the proprioceptors in the skin, muscles, and joints.[24]

Balance

[edit]

The receptor for the sense of balance resides in the vestibular system in the ear (for the three-dimensional orientation of the head, and by inference, the rest of the body). Balance is also mediated by the kinesthetic reflex fed by proprioception (which senses the relative location of the rest of the body to the head).[25] In addition, proprioception estimates the location of objects which are sensed by the visual system (which provides confirmation of the place of those objects relative to the body), as input to the mechanical reflexes of the body.

Fine touch and crude touch

[edit]
The cortical homunculus, a map of somatosensory areas of the brain, was devised by Wilder Penfield.

Fine touch (or discriminative touch) is a sensory modality that allows a subject to sense and localize touch. The form of touch where localization is not possible is known as crude touch. The dorsal column–medial lemniscus pathway is the pathway responsible for the sending of fine touch information to the cerebral cortex of the brain.

Crude touch (non-discriminating) is a sensory modality that allows the subject to sense that something has touched them, without being able to localize where they were touched (contrasting "fine touch"). Its fibres are carried in the spinothalamic tract, unlike the fine touch, which is carried in the dorsal column. [26] As fine touch normally works in parallel to crude touch, a person will be able to localize touch until fibres carrying fine touch (in the dorsal column–medial lemniscus pathway) have been disrupted. Then the subject will feel the touch, but be unable to identify where they were touched.

Neural processing of social touch

[edit]

The somatosensory cortex encodes incoming sensory information from receptors all over the body. Affective touch is a type of sensory information that elicits an emotional reaction and is usually social in nature, such as a physical human touch. This type of information is actually coded differently than other sensory information. Intensity of affective touch is still encoded in the primary somatosensory cortex and is processed in a similar way to emotions invoked by sight and sound, as exemplified by the increase of adrenaline caused by the social touch of a loved one, as opposed to the physical inability to touch someone you do not love.

Meanwhile, the feeling of pleasantness associated with affective touch activates the anterior cingulate cortex more than the primary somatosensory cortex. Functional magnetic resonance imaging (fMRI) data shows that increased blood-oxygen-level contrast (BOLD) signal in the anterior cingulate cortex as well as the prefrontal cortex is highly correlated with pleasantness scores of an affective touch. Inhibitory transcranial magnetic stimulation (TMS) of the primary somatosensory cortex inhibits the perception of affective touch intensity, but not affective touch pleasantness. Therefore, the S1 is not directly involved in processing socially affective touch pleasantness, but still plays a role in discriminating touch location and intensity.[26]

Tactile interaction is important amongst some animals. Usually, tactile contact between two animals occurs through stroking, licking, or grooming. These behaviours are essential for the individual's social healthcare, as in the hypothalamus they induce the release of oxytocin, a hormone that decreases stress and anxiety and increases social bonding between animals.[27][clarification needed]

More precisely, the consistency of oxytocin neuron activation in rats stroked by humans has been observed, especially in the caudal paraventricular nucleus.[28] It was found that this affiliative relationship induced by tactile contact is common no matter the relationship between the two individuals (mother-infant, male-female, human-animal). It has also been discovered that the level of oxytocin release through this behaviour correlates with the time course of social interaction as longer stroking induced a greater release of the hormone.[29]

The importance of somatosensory stimulation in social animals such as primates has also been observed. Grooming is part of the social interaction primates exert on their conspecifics. This interaction is required between individuals to maintain the affiliative relationship within the group, avoid internal conflict and increase group bonding.[30] However, such social interaction requires the recognition of every member in the group. As such, it has been observed that the size of the neocortex is positively correlated with the size of the group, reflecting a limit to the number of recognizable members amongst which grooming can occur.[30] Furthermore, the time course of grooming is related to vulnerability due to predation to which animals are exposed to whilst performing such social interaction. The relationship between tactile interaction, stress reduction and social bonding depends on the evaluation of risks that occur during conducting such behaviours in the wild life, and further research is required to unveil the connection between tactile caring and fitness level.

Studies show a correlation between touching a soft or hard object and how a person thinks or even makes decisions.[31] Further, between the firmness of a touch and the evoking of gender stereotyping.[32]

Tactile memories as part of haptic memory, are organized somatotopically, following the organization of the somatosensory cortex.

Individual variation

[edit]

A variety of studies have measured and investigated the causes for differences between individuals in the sense of fine touch. One well-studied area is passive tactile spatial acuity, the ability to resolve the fine spatial details of an object pressed against the stationary skin. A variety of methods have been used to measure passive tactile spatial acuity, perhaps the most rigorous being the grating orientation task.[33] In this task subjects identify the orientation of a grooved surface presented in two different orientations,[34] which can be applied manually or with automated equipment.[35] Many studies have shown a decline in passive tactile spatial acuity with age;[36][37][38] the reasons for this decline are unknown, but may include loss of tactile receptors during normal aging. Remarkably, index finger passive tactile spatial acuity is better among adults with smaller index fingertips;[39] this effect of finger size has been shown to underlie the better passive tactile spatial acuity of women, on average, compared to men.[39] The density of tactile corpuscles, a type of mechanoreceptor that detects low-frequency vibrations, is greater in smaller fingers;[40] the same may hold for Merkel cells, which detect the static indentations important for fine spatial acuity.[39] Among children of the same age, those with smaller fingers also tend to have better tactile acuity.[41] Many studies have shown that passive tactile spatial acuity is enhanced among blind individuals compared to sighted individuals of the same age,[38][42][43][44][45] possibly because of cross modal plasticity in the cerebral cortex of blind individuals. Perhaps also due to cortical plasticity, individuals who have been blind since birth reportedly consolidate tactile information more rapidly than sighted people.[46]

Clinical significance

[edit]

A somatosensory deficiency may be caused by a peripheral neuropathy involving peripheral nerves of the somatosensory system. This may present as numbness or paresthesia.

Society and culture

[edit]

Haptic technology can provide touch sensation in virtual and real environments.[47] In the field of speech therapy, tactile feedback can be used to treat speech disorders.[citation needed]

Affectionate touch is present in everyday life and can take multiple forms. These actions, however, seem to carry specific functions even though the evolutionary benefit from such a wide range of behaviours is not entirely understood. Researchers investigated the expression patterns and characteristics of 8 different affectionate touch actions - embracing, holding, kissing, leaning, petting, squeezing, stroking, and tickling - in a self-report study.[48] It was found that the affectionate touch has distinct target areas on the body, different associated affect, comfort-value, and expression frequency based on the type of touch action that is performed.

Besides the rather obvious sensory consequences of touch, it can also affect higher-level aspects of cognition such as social judgements and decision-making. This effect might arise due to a physical-to-mental scaffolding process in early development, whereby sensorimotor experiences are linked to the emergence of conceptual knowledge.[49] Such links might be maintained throughout life, and so touching an object may cue the physical sensation to its related conceptual processing. Indeed, it was found that different physical properties - weight, texture, and hardness - of a touched object can influence social judgement and decision-making.[50] For example, participants described a passage of a social interaction to be harsher when they touched a hard wooden block instead of a soft blanket prior to the task. Building on these findings, the ability of touch to have an unconscious influence on such higher-order thoughts may provide a novel tool for marketing and communication strategies.

See also

[edit]

References

[edit]
  1. ^ a b Wang, L; Ma, L; Yang, J; Wu, J (2021). "Human Somatosensory Processing and Artificial Somatosensation". Cyborg and Bionic Systems. 2021: 9843259. doi:10.34133/2021/9843259. PMC 9494715. PMID 36285142.
  2. ^ Raju, Harsha; Tadi, Prasanna (2025). "Neuroanatomy, Somatosensory Cortex". StatPearls. StatPearls Publishing. PMID 32310375.
  3. ^ Tang, Ding-lan; Niziolek, Caroline A.; Parrell, Benjamin (April 2023). "Modulation of somatosensation by transcranial magnetic stimulation over somatosensory cortex: a systematic review". Experimental Brain Research. 241 (4): 951–977. doi:10.1007/s00221-023-06579-9. PMC 10851347. PMID 36949150.
  4. ^ de Haan, Edward H.F.; Dijkerman, H. Chris (July 2020). "Somatosensation in the Brain: A Theoretical Re-evaluation and a New Model". Trends in Cognitive Sciences. 24 (7): 529–541. doi:10.1016/j.tics.2020.04.003. PMID 32430229.
  5. ^ Giraud, Michelle; Javadi, Amir-Homayoun; Lenatti, Carmen; Allen, John; Tamè, Luigi; Nava, Elena (18 October 2024). "The role of the somatosensory system in the feeling of emotions: a neurostimulation study". Social Cognitive and Affective Neuroscience. 19 (1). doi:10.1093/scan/nsae062. PMC 11488518. PMID 39275796.
  6. ^ a b c Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark (2001). "The Somatic Sensory System". Neuroscience (2nd ed.). Sinauer Associates.
  7. ^ a b Saladin, Kenneth S. (2011). Human anatomy (3rd ed.). New York: McGraw-Hill. p. 420. ISBN 9780071222075.
  8. ^ Saladin, Kenneth S. (2011). Human anatomy (3rd ed.). New York: McGraw-Hill. p. 464. ISBN 9780071222075.
  9. ^ Sherman, Carl (August 12, 2019). "The Senses: The Somatosensory system". Dana Foundation. New York.
  10. ^ Hertenstein, Matthew J.; Keltner, Dacher; App, Betsy; Bulleit, Brittany A.; Jaskolka, Ariane R. (2006). "Touch communicates distinct emotions". Emotion. 6 (3): 528–533. doi:10.1037/1528-3542.6.3.528. PMID 16938094.
  11. ^ Sima, Richard (23 December 2019). "The Brain Senses Touch beyond the Body". Scientific American. Retrieved 16 February 2020.
  12. ^ Paré, Michel; Behets, Catherine; Cornu, Olivier (2003). "Paucity of presumptive ruffini corpuscles in the index finger pad of humans". Journal of Comparative Neurology. 456 (3): 260–266. doi:10.1002/cne.10519. PMID 12528190.
  13. ^ Scheibert J, Leurent S, Prevost A, Debrégeas G (March 2009). "The role of fingerprints in the coding of tactile information probed with a biomimetic sensor". Science. 323 (5920): 1503–6. arXiv:0911.4885. Bibcode:2009Sci...323.1503S. doi:10.1126/science.1166467. PMID 19179493.
  14. ^ Biswas A, Manivannan M, Srinivasan MA (2015). "Vibrotactile sensitivity threshold: nonlinear stochastic mechanotransduction model of the Pacinian Corpuscle". IEEE Transactions on Haptics. 8 (1): 102–13. doi:10.1109/TOH.2014.2369422. PMID 25398183.
  15. ^ Paré, Michel; Elde, Robert; Mazurkiewicz, Joseph E.; Smith, Allan M.; Rice, Frank L. (2025-08-06). "The Meissner Corpuscle Revised: A Multiafferented Mechanoreceptor with Nociceptor Immunochemical Properties". The Journal of Neuroscience. 21 (18): 7236–7246. doi:10.1523/JNEUROSCI.21-18-07236.2001. ISSN 0270-6474. PMC 6763005. PMID 11549734.
  16. ^ Hashim IH, Kumamoto S, Takemura K, Maeno T, Okuda S, Mori Y (November 2017). "Tactile Evaluation Feedback System for Multi-Layered Structure Inspired by Human Tactile Perception Mechanism". Sensors. 17 (11): 2601. Bibcode:2017Senso..17.2601H. doi:10.3390/s17112601. PMC 5712818. PMID 29137128.
  17. ^ Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (January 2001). "Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study". The European Journal of Neuroscience. 13 (2): 400–4. doi:10.1111/j.1460-9568.2001.01385.x. PMID 11168545.
  18. ^ Seelke AM, Padberg JJ, Disbrow E, Purnell SM, Recanzone G, Krubitzer L (August 2012). "Topographic Maps within Brodmann's Area 5 of macaque monkeys". Cerebral Cortex. 22 (8): 1834–50. doi:10.1093/cercor/bhr257. PMC 3388892. PMID 21955920.
  19. ^ Geyer, Stefan; Schleicher, Axel; Zilles, Karl (1 July 1999). "Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex: 1. Microstructural Organization and Interindividual Variability". NeuroImage. 10 (1): 63–83. doi:10.1006/nimg.1999.0440. PMID 10385582.
  20. ^ Disbrow E (June 2002). "Thalamocortical connections of the parietal ventral area (PV) and the second somatosensory area (S2) in macaque monkeys". Thalamus & Related Systems. 1 (4): 289–302. doi:10.1016/S1472-9288(02)00003-1.
  21. ^ Saladin KS. Anatomy and Physiology 3rd edd. 2004. McGraw-Hill, New York.
  22. ^ "Second Order Neuron". Encyclopedia of Pain. Springer. 2013. p. 3448. doi:10.1007/978-3-642-28753-4_201964. ISBN 978-3-642-28752-7. Retrieved 2 December 2022.
  23. ^ a b Zukerman, Wendy. "Skin 'sees' the light to protect against sunshine". newscientist.com. New Scientist. Retrieved 2025-08-06.
  24. ^ Proske U, Gandevia SC (October 2012). "The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force". Physiological Reviews. 92 (4): 1651–97. doi:10.1152/physrev.00048.2011. PMID 23073629.
  25. ^ Proske U, Gandevia SC (September 2009). "The kinaesthetic senses". The Journal of Physiology. 587 (Pt 17): 4139–46. doi:10.1113/jphysiol.2009.175372. PMC 2754351. PMID 19581378.
  26. ^ a b Case LK, Laubacher CM, Olausson H, Wang B, Spagnolo PA, Bushnell MC (May 2016). "Encoding of Touch Intensity But Not Pleasantness in Human Primary Somatosensory Cortex". The Journal of Neuroscience. 36 (21): 5850–60. doi:10.1523/JNEUROSCI.1130-15.2016. PMC 4879201. PMID 27225773.
  27. ^ Knobloch, H. Sophie; Grinevich, Valery (2014). "Evolution of oxytocin pathways in the brain of vertebrates". Frontiers in Behavioral Neuroscience. 8: 31. doi:10.3389/fnbeh.2014.00031. ISSN 1662-5153. PMC 3924577. PMID 24592219.
  28. ^ Okabe, Shota; Takayanagi, Yuki; Yoshida, Masahide; Onaka, Tatsushi (2025-08-06). "Gentle stroking stimuli induce affiliative responsiveness to humans in male rats". Scientific Reports. 10 (1): 9135. Bibcode:2020NatSR..10.9135O. doi:10.1038/s41598-020-66078-7. ISSN 2045-2322. PMC 7272613. PMID 32499488.
  29. ^ Tang, Yan; Benusiglio, Diego; Lefevre, Arthur; Hilfiger, Louis; Althammer, Ferdinand; Bludau, Anna; Hagiwara, Daisuke; Baudon, Angel; Darbon, Pascal; Schimmer, Jonas; Kirchner, Matthew K.; Roy, Ranjan K.; Wang, Shiyi; Eliava, Marina; Wagner, Shlomo; Oberhuber, Martina; Conzelmann, Karl K.; Schwarz, Martin; Stern, Javier E.; Leng, Gareth; Neumann, Inga D.; Charlet, Alexandre; Grinevich, Valery (September 2020). "Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons". Nature Neuroscience. 23 (9): 1125–1137. doi:10.1038/s41593-020-0674-y. PMID 32719563.
  30. ^ a b Lehmann, J.; Korstjens, A.H.; Dunbar, R.I.M. (December 2007). "Group size, grooming and social cohesion in primates" (PDF). Animal Behaviour. 74 (6): 1617–1629. doi:10.1016/j.anbehav.2006.10.025.
  31. ^ "Just a Touch Can Influence Thoughts and Decisions". Live Science. 24 June 2010.
  32. ^ "Firmness of Touch May Evoke Gender Stereotyping". Live Science. 12 January 2011.
  33. ^ Van Boven, Robert W.; Johnson, Kenneth O. (December 1994). "The limit of tactile spatial resolution in humans". Neurology. 44 (12): 2361–2361. doi:10.1212/wnl.44.12.2361. PMID 7991127.
  34. ^ Craig JC (1999). "Grating orientation as a measure of tactile spatial acuity". Somatosensory & Motor Research. 16 (3): 197–206. doi:10.1080/08990229970456. PMID 10527368.
  35. ^ Goldreich D, Wong M, Peters RM, Kanics IM (June 2009). "A Tactile Automated Passive-Finger Stimulator (TAPS)". Journal of Visualized Experiments (28). doi:10.3791/1374. PMC 2726582. PMID 19578327.
  36. ^ Stevens JC, Alvarez-Reeves M, Dipietro L, Mack GW, Green BG (2003). "Decline of tactile acuity in aging: a study of body site, blood flow, and lifetime habits of smoking and physical activity". Somatosensory & Motor Research. 20 (3–4): 271–9. doi:10.1080/08990220310001622997. PMID 14675966.
  37. ^ Manning H, Tremblay F (2006). "Age differences in tactile pattern recognition at the fingertip". Somatosensory & Motor Research. 23 (3–4): 147–55. doi:10.1080/08990220601093460. PMID 17178550.
  38. ^ a b Goldreich D, Kanics IM (April 2003). "Tactile acuity is enhanced in blindness". The Journal of Neuroscience. 23 (8): 3439–45. doi:10.1523/jneurosci.23-08-03439.2003. PMC 6742312. PMID 12716952.
  39. ^ a b c Peters RM, Hackeman E, Goldreich D (December 2009). "Diminutive digits discern delicate details: fingertip size and the sex difference in tactile spatial acuity". The Journal of Neuroscience. 29 (50): 15756–61. doi:10.1523/JNEUROSCI.3684-09.2009. PMC 3849661. PMID 20016091.
  40. ^ Dillon YK, Haynes J, Henneberg M (November 2001). "The relationship of the number of Meissner's corpuscles to dermatoglyphic characters and finger size". Journal of Anatomy. 199 (Pt 5): 577–84. doi:10.1046/j.1469-7580.2001.19950577.x. PMC 1468368. PMID 11760888.
  41. ^ Peters RM, Goldreich D (2013). "Tactile spatial acuity in childhood: effects of age and fingertip size". PLOS ONE. 8 (12): e84650. Bibcode:2013PLoSO...884650P. doi:10.1371/journal.pone.0084650. PMC 3891499. PMID 24454612.
  42. ^ Stevens, Joseph C.; Foulke, Emerson; Patterson, Matthew Q. (1996). "Tactile acuity, aging, and braille reading in long-term blindness". Journal of Experimental Psychology: Applied. 2 (2): 91–106. doi:10.1037/1076-898X.2.2.91.
  43. ^ Van Boven RW, Hamilton RH, Kauffman T, Keenan JP, Pascual-Leone A (June 2000). "Tactile spatial resolution in blind braille readers". Neurology. 54 (12): 2230–6. doi:10.1212/wnl.54.12.2230. PMID 10881245.
  44. ^ Goldreich D, Kanics IM (November 2006). "Performance of blind and sighted humans on a tactile grating detection task". Perception & Psychophysics. 68 (8): 1363–71. doi:10.3758/bf03193735. PMID 17378422.
  45. ^ Wong M, Gnanakumaran V, Goldreich D (May 2011). "Tactile spatial acuity enhancement in blindness: evidence for experience-dependent mechanisms". The Journal of Neuroscience. 31 (19): 7028–37. doi:10.1523/JNEUROSCI.6461-10.2011. PMC 6703211. PMID 21562264.
  46. ^ Bhattacharjee A, Ye AJ, Lisak JA, Vargas MG, Goldreich D (October 2010). "Vibrotactile masking experiments reveal accelerated somatosensory processing in congenitally blind braille readers". The Journal of Neuroscience. 30 (43): 14288–98. doi:10.1523/JNEUROSCI.1447-10.2010. PMC 3449316. PMID 20980584.
  47. ^ Gabriel Robles-De-La-Torre. "International Society for Haptics: Haptic technology, an animated explanation". Isfh.org. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  48. ^ Schirmer, Annett; Chiu, Man Hey; Croy, Ilona (September 2021). "More than one kind: Different sensory signatures and functions divide affectionate touch". Emotion. 21 (6): 1268–1280. doi:10.1037/emo0000966. PMID 34435843.
  49. ^ Williams, Lawrence E.; Huang, Julie Y.; Bargh, John A. (2025-08-06). "The Scaffolded Mind: Higher mental processes are grounded in early experience of the physical world". European Journal of Social Psychology. 39 (7): 1257–1267. doi:10.1002/ejsp.665. ISSN 0046-2772. PMC 2799930. PMID 20046813.
  50. ^ Ackerman, Joshua M.; Nocera, Christopher C.; Bargh, John A. (2025-08-06). "Incidental haptic sensations influence social judgments and decisions". Science. 328 (5986): 1712–1715. Bibcode:2010Sci...328.1712A. doi:10.1126/science.1189993. ISSN 1095-9203. PMC 3005631. PMID 20576894.

Further reading

[edit]
[edit]
美尼尔综合征是什么原因引起的 福生无量是什么意思 生理期提前是什么原因 反流性咽喉炎吃什么药最好 阑尾切除后有什么影响和后遗症
颈部有肿块看什么科室 白细胞低是什么原因造成的 制冰机不制冰是什么原因 抗hbc阳性是什么意思 脖子短适合什么发型
为什么要补钾 什么行业赚钱 灰指甲用什么药膏 为什么不能叫醒梦游的人 为什么会得面瘫
爬山有什么好处 江团鱼又叫什么鱼 吃什么排毒最快 flair是什么意思 义齿是什么
牛子是什么xinjiangjialails.com 治鸡眼用什么药最好hcv9jop1ns8r.cn 苦瓜和什么不能一起吃hcv8jop7ns5r.cn 慢什么斯什么hcv7jop9ns5r.cn 恐龙灭绝的原因是什么hcv8jop9ns7r.cn
什么星星520myf.com 肌肉痉挛用什么药能治好hcv7jop7ns0r.cn 单核细胞百分比偏高是什么意思hcv8jop7ns1r.cn 农历五月初五是什么节日hcv7jop7ns3r.cn 什么人不适合艾灸hcv8jop7ns9r.cn
射手什么象星座hcv9jop7ns1r.cn 虫草适合什么人吃hcv9jop4ns0r.cn 上火牙龈肿痛吃什么药tiangongnft.com 嘴唇干裂是什么原因hcv8jop3ns8r.cn 阴虚吃什么药效果最好hcv8jop2ns9r.cn
有什么hcv7jop9ns6r.cn 95511是什么电话hcv7jop6ns6r.cn 人为什么会打哈欠hcv8jop9ns8r.cn 睡觉腿抽筋是什么原因hcv9jop8ns1r.cn 发低烧吃什么药hcv8jop3ns9r.cn
百度